accuracy inspections etc.
Airbus Aerial is a commercial drone startup under Airbus which leverages on existing aerospace technology to provide imagery services across applications such as insurance, agriculture, building inspections etc.

Project Overview
As such, drones are increasingly deployed to speed up inspection processes. Machine Learning is used to process image data, to standardise defect identification process.

Key Objectives
To evaluate the usage of CNN machine learning models in facade defects inspection

Skillsets Applied
Statistical data analysis
Machine Learning using Python programming

Data Collection
- **Scraping**
 - To build database
- **Slicing**
 - To increase images in database
- **Rotation**
 - To increase robustness of training data set

Base CNN Architecture
Input layer is customized to take in images in dimensions 224*224*3, which represents width, height and depth

Accuracy Analysis
Overall Accuracy (%)

![Accuracy Analysis Diagram]

Type II error is another metric that should be considered when deciding the best combination

Further Improvements
MobileNetV2
Using depth wise separable convolutions which replace traditional convolutions - reduce computation and parameters.

Model with Transfer Learning
Where pre-trained weights from Imagenet is used
Hence model does not have to learn from scratch

Accuracy: 38.7% to 63%
Type II error: 11.8% to 65.8%
Earlier layers are untrainable, which are crucial for defect detection

Model w/o Transfer Learning
Best performing accuracy of 94.6% with 0% Type II error
Hyperparameter combination of 150 EP, 16 BS and 0.0001 LR

Hyperparameter Optimization
Varying 3 different hyperparameters for 5 chosen intervals to find out the combination that leads to the highest accuracy amidst 125 configurations

Benchmarking
Chaiasam et al. Our Base CNN Archi.
Inspect heritage buildings 2 classes Test accuracy 67.5%
Cha et al. Our Base CNN Archi.
Trained with 3,000 images 2 classes Test accuracy 97%

Limitations
Limited capability of CPU - Unable to run 128, 256 BS on MobileNetV2
Lack of representative data for all classes - Limited to 1000 images per class
Long training time required for MobileNetV2

Future Direction & Conclusion
Use actual image data captured by Airbus drones
Identify multiple defects in a single image
Overall accuracy and Type II errors should be considered as performance indicators for hyperparameter optimization
MobileNetV2 is preferred with its higher overall accuracy