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MANY-SERVER QUEUES WITH CUSTOMER

ABANDONMENT: NUMERICAL ANALYSIS OF THEIR

DIFFUSION MODEL

By J. G. Dai∗ and Shuangchi He†

Cornell University‡ and National University of Singapore

We use a multidimensional diffusion process to approximate the
dynamics of a queue served by many parallel servers. Waiting cus-
tomers in this queue may abandon the system without service. To
analyze the diffusion model, we develop a numerical algorithm for
computing its stationary distribution. A crucial part of the algorithm
is choosing an appropriate reference density. Using a conjecture on
the tail behavior of the limit queue length process, we propose a sys-
tematic approach to constructing a reference density. With the pro-
posed reference density, the algorithm is shown to converge quickly in
numerical experiments. These experiments demonstrate that the dif-
fusion model is a satisfactory approximation for many-server queues,
sometimes for queues with as few as twenty servers.

1. Introduction. The focus of this paper is the numerical analysis of
a multidimensional diffusion process that approximates the dynamics of a
queue with many parallel servers. A many-server queue serves as a building
block modeling operations of a large-scale service system. Such a service
system could be a call center with hundreds of service agents, a hospital
department with tens or hundreds of inpatient beds, or a computer cluster
with many processors. When the customers of a service system are human
beings, some of them may abandon the system before their service begins.
The phenomenon of customer abandonment is ubiquitous because no one
would wait for service indefinitely. As argued by Garnett et al. in [11], one
must model customer abandonment explicitly in order for an operational
model to be relevant for decision making. We model customer abandonment
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by assigning each customer a patience time. When a customer’s waiting time
for service exceeds his patience time, he abandons the queue without service.

The exact analysis of such a many-server queue has been largely limited
to the M/M/n +M model (also known as the Erlang-A model) that has
a Poisson arrival process and exponential service and patience time distri-
butions. See, e.g., [11]. However, as pointed out by Brown et al. in [1], the
service time distribution in a call center appears to follow a log-normal dis-
tribution. In [34], the patience time distribution in a call center has been
observed to be far from exponential, too. With a general service or patience
time distribution, there is no finite-dimensional Markovian representation
of the queue. Except computer simulation, there is no method that is able
to exactly analyze such a queue either analytically or numerically. To deal
with this challenge, the following strategies are adopted in this paper.

First, the service time distribution is restricted to be phase-type. As
phase-type distributions can approximate any positive-valued distribution,
such a queueing model is still relevant to practical systems. We focus on a
GI/Ph/n +GI queue with n identical servers. The first GI indicates that
the customer interarrival times are independent and identically distributed
(iid) following a general distribution, the Ph indicates that the service times
are iid following a phase-type distribution, and the +GI indicates that the
patience times are iid following a general distribution. Second, we are par-
ticularly interested in a queue operated in the quality- and efficiency-driven
(QED) regime. In this regime, the queue has a large number of servers and
the arrival rate is high; the arrival rate and the service capacity are approxi-
mately balanced so that the mean waiting time is relatively short compared
with the mean service time. Such a system has high server utilization as well
as short customer waiting times and a small fraction of customer abandon-
ment. Therefore, both quality and efficiency can be achieved in this regime.
See [11] for more details on the QED regime. Third, rather than analyzing
the many-server queue itself, we propose and analyze an approximate model.
In this model, a multidimensional diffusion process is used to represent the
scaled customer numbers in all service phases. We also develop a numerical
algorithm to solve the stationary distribution of the diffusion process. This
distribution is used to estimate the performance of the many-server queue.
Numerical examples in Section 4 demonstrate that the diffusion model is
accurate, even if the queue has as few as twenty servers.

Except for certain simple cases, the stationary distribution of a diffusion
process has no explicit formula. The algorithm proposed in this paper is a
variant of the one developed by Dai and Harrison in [5], which is used to
compute the stationary distribution of a semimartingale reflecting Brownian
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motion (SRBM). As in [5], the starting point of our algorithm is the basic
adjoint relationship that characterizes the stationary distribution of a diffu-
sion process. With an appropriate reference density, the algorithm produces
a stationary density that satisfies this relationship.

We set up a Hilbert space using the reference density. In this space,
the stationary density of the diffusion process is orthogonal to an infinite-
dimensional subspace H. A finite-dimensional subspace Hk is used to ap-
proximate H and a function orthogonal to Hk is numerically computed by
solving a system of linear equations. This function is used to approximate
the stationary density. There are two sources of numerical error from compu-
tation: approximation error and round-off error. Approximation error arises
because Hk is an approximation of H. As Hk increases to H, this error de-
creases to zero. Round-off error occurs because the solution to the system
of linear equations has error due to the finite precision of a computer. As
Hk increases to H, the dimension of the linear system gets higher and the
coefficient matrix becomes closer to singular. As a consequence, the round-
off error increases. The condition number of the matrix is used as a proxy
for the round-off error. Balancing approximation and round-off error is an
important issue in our algorithm.

A properly chosen reference density is essential for the convergence of the
algorithm. By convergence, we mean that the approximation error converges
to zero as Hk increases to H. More importantly, a “good” reference density
can make Hk converge to H quickly so that the resulting approximation
error and round-off error are small simultaneously even though the dimen-
sion of Hk is moderate. To ensure the convergence of the algorithm, the
reference density should have a comparable or slower decay rate than the
stationary density. Since the stationary density is unknown, we make a con-
jecture on the tail behavior of the limit queue length process of many-server
queues with customer abandonment. We conjecture that the limit queue
length process has a Gaussian tail and the tail depends on the service time
distribution only through its first two moments. This tail is used to con-
struct a product-form reference density. The algorithm appears to converge
quickly with this reference density, producing stable and accurate results.
For comparison purposes, we also test the algorithm with a “naively” chosen
reference density in Section 5.1. The algorithm fails to converge in that case.

Besides the proposed diffusion model, the major contribution of this work
is the systematic approach that exploits the asymptotic tail behavior of
queue length processes to constructing a reference density for the generic
algorithm developed in [5]. Using a finite element implementation of their
algorithm with our choice of the reference density, we demonstrate that the
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diffusion model is an adequate and tractable approximation for many-server
queues.

Our diffusion model is obtained by replacing certain scaled renewal pro-
cesses by Brownian motions. The replacement procedure is rooted in the
limit theorems for many-server queues in heavy traffic. More specifically,
the diffusion model is motivated by the diffusion limits proved in [6] and
[26]. The theory of diffusion approximation for many-server queues can be
traced back to the seminal paper [13] by Halfin and Whitt, where a diffusion
limit was established for GI/M/n queues. Garnett et al. proved a diffusion
limit in [11] for M/M/n + M queues that allows for customer abandon-
ment. Whitt generalized this result in [32] to G/M/n+M queues. Puhalskii
and Reiman established a diffusion limit in [25] for GI/Ph/n queues. Their
result was extended in [6] to G/Ph/n+GI queues with customer abandon-
ment by Dai et al. Recently, Reed and Tezcan proved a diffusion limit for
GI/M/n +GI queues in [26]. In their framework, a refined limit process is
obtained by scaling the patience time hazard rate function.

Harrison and Nguyen derived Brownian models for multiclass open queue-
ing networks in [14]. Their diffusion models are SRBMs and are rooted in the
conventional heavy traffic limit theorems pioneered by Iglehart and Whitt
for serial networks in [16] and by Reiman for single-class networks in [28]. See
[33] for a survey of limit theorems in the literature. For a two-dimensional
SRBM living in a rectangle, Dai and Harrison proposed an algorithm in
[4] for computing its stationary distribution. In [5], they extended the algo-
rithm to an SRBM living in an orthant. The notion of a reference density
was first introduced there to deal with the unbounded state space. Their
finite-dimensional space Hk is constructed by multinominals of order up to
k. With this choice of Hk, the algorithm sometimes appears numerically un-
stable. In such a case, the round-off error dominates the algorithm output
while the approximation error is still significant. In [30], Shen et al. extended
the algorithm in [4] to a hypercube state space of an arbitrary dimension.
They employed a finite element method to construct Hk to avoid numerical
instability. Their algorithm sometimes converges slowly because it does not
use a reference density. A linear programming algorithm for computing the
stationary distribution of a diffusion process was proposed by Saure et al.
in [29]. Both SRBMs in an orthant and a diffusion approximation of many-
server queues with two priority classes were investigated in their paper. Like
the role of a reference density, the rescaling of variables is essential to the
convergence of their algorithm.

The remainder of the paper is organized as follows. The diffusion model for
GI/Ph/n+GI queues is presented in Section 2. In Section 3, we begin with
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recapitulating the generic algorithm in [5] and then discuss how to choose
a reference density by exploiting the tail behavior of a diffusion process.
In Section 4, it is demonstrated via numerical examples that the diffusion
model is a good approximation of many-server queues. Section 5 is dedicated
to a few implementation issues arising from the algorithm. The paper is
concluded in Section 6. We leave the finite element implementation of the
algorithm to the appendix.

Notation. The symbols N, R, and R+ are used to denote the sets of
positive integers, real numbers, and nonnegative real numbers, respectively.
For d,m ∈ N, R

d denotes the d-dimensional Euclidean space and R
d×m

denotes the space of d×m real matrices. We use C2
b (R

d) to denote the set of
real-valued functions on R

d that are twice continuously differentiable with
bounded first and second derivatives. For z, w ∈ R, we set z+ = max{z, 0},
z− = max{−z, 0}, and z ∧ w = min{z, w}. All vectors are envisioned as
column vectors. For a d-dimensional vector x ∈ R

d, we use xj for its jth
entry and diag(x) for the d× d diagonal matrix with jth diagonal entry xj .
For a matrixM ,M ′ denotes its transpose,Mij denotes its (i, j)th entry, and
|M | = (

∑

i,jM
2
ij)

1/2. We reserve I for the d × d identity matrix, e for the

d-dimensional vector with all entries 1, and ej for the d-dimensional vector
with its jth entry 1 and all other entries 0. Given two functions ϕ and ϕ̂
from N to R, we write ϕ̂(n) = O(ϕ(n)) as n→ ∞ if there exists a constant
κ > 0 and some n0 ∈ N such that |ϕ̂(n)| ≤ κ|ϕ(n)| for all n > n0.

2. A diffusion model for many-server queues. In this section, we
introduce the GI/Ph/n+GI queue and elaborate how to use a multidimen-
sional diffusion process to approximate its dynamics. Diffusion processes and
the basic adjoint relationship are reviewed in Section 2.1. The dynamics of
the GI/Ph/n+GI queue is studied in Section 2.2. We present the diffusion
model in Section 2.3.

2.1. Diffusion processes. Let d be a positive integer and (Ω,F ,F,P) be
a filtered probability space with filtration F = {Ft : t ≥ 0}. Consider a d-
dimensional diffusion process X = {X(t) : t ≥ 0} that satisfies the following
stochastic differential equation

(2.1) X(t) = X(0) +

∫ t

0
b(X(s)) ds +

∫ t

0
σ(X(s)) dB(s).

In (2.1), the drift coefficient b is a function from R
d to R

d, the diffusion
coefficient σ is a function from R

d to R
d×m, and B = {B(t) : t ≥ 0} is an m-

dimensional standard Brownian motion with respect to F. We assume that
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both b and σ are Lipschitz continuous, i.e., there exists a constant c1 > 0
such that

(2.2) |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ c1|x− y| for all x, y ∈ R
d.

Under condition (2.2), the stochastic differential equation (2.1) has a unique
strong solution, i.e., there exists a unique process X on (Ω,F ,F,P) such
that (a) X is adapted to F, (b) for each sample path ω ∈ Ω, X(t, ω) is
continuous in t, and (c) for each t ≥ 0, the stochastic differential equation
(2.1) holds with probability 1. See [24] for more details. We also assume that
σ is uniformly elliptic, i.e., there exists a constant c2 > 0 such that

(2.3) y′Σ(x)y ≥ c2y
′y for all x, y ∈ R

d,

where

(2.4) Σ(x) = σ(x)σ′(x).

We are interested in the diffusion process that models the dynamics of a
many-server queue. Such a process will be identified in Section 2.3 and the
coefficients b and σ will be mapped out explicitly in terms of primitive
parameters of the queue.

A probability distribution π on R
d is said to be a stationary distribution

ofX ifX(t) follows distribution π for each t > 0 wheneverX(0) has distribu-
tion π. Condition (2.3) is required to ensure the uniqueness of the stationary
distribution. See [7] for more details. In the present paper, we assume that
X has a unique stationary distribution π and that π has a density g with
respect to the Lebesgue measure on R

d. For a general diffusion process, there
is no explicit formula for π, so we develop a numerical algorithm. As in [5],
the starting point of the algorithm is the basic adjoint relationship

(2.5)

∫

Rd

Gf(x)π(dx) = 0 for all f ∈ C2
b (R

d),

where G is the generator of X defined by
(2.6)

Gf(x) =
d

∑

j=1

bj(x)
∂f(x)

∂xj
+

1

2

d
∑

j=1

d
∑

ℓ=1

Σjℓ(x)
∂2f(x)

∂xj∂xℓ
for each f ∈ C2

b (R
d)

and Σ is the covariance matrix given by (2.4). The following theorem is a
consequence of Proposition 9.2 in [8].

Theorem 1. Let π be a probability distribution on R
d that satisfies (2.5).

Then, π is a stationary distribution of X.
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In this paper, we conjecture that a stronger version of Theorem 1 is true.

Conjecture 1. Let π be a signed measure on R
d that satisfies (2.5)

and π(Rd) = 1. Then, π is a nonnegative measure and consequently it is a
stationary distribution of X.

Our algorithm is to construct a function g on R
d such that

(2.7)

∫

Rd

g(x) dx = 1 and

∫

Rd

Gf(x)g(x) dx = 0 for all f ∈ C2
b (R

d).

Assuming that Conjecture 1 is true, g must be the unique stationary density
of X. As a special case, the nonnegativity of the signed measure π that sat-
isfies (2.5) for the piecewise Ornstein–Uhlenbeck (OU) process was proposed
as an open problem in [3]. The piecewise OU process will be introduced in
Section 2.3.

2.2. The GI/Ph/n + GI queue in the QED regime. Let us focus on a
queue with many parallel servers. In this queue, the service time distribu-
tion is restricted to be phase-type. All positive-valued distributions can be
approximated by phase-type distributions.

Let p be a d-dimensional nonnegative vector whose entries sum to 1, ν
be a d-dimensional positive vector, and P be a d× d sub-stochastic matrix.
We assume that the diagonal entries of P are zero and that P is transient,
namely, I − P is invertible. Consider a continuous-time Markov chain with
d+ 1 phases (or states) where phases 1, . . . , d are transient and phase d+ 1
is absorbing. For j = 1, . . . , d, the Markov chain starts in phase j with
probability pj . The amount of time that it stays in phase j is exponentially
distributed with mean 1/νj . When it leaves phase j, the Markov chain enters
phase ℓ = 1, . . . , d with probability Pjℓ or enters phase d+1 with probability

1 − ∑d
ℓ=1 Pjℓ. The phase-type distribution with parameters (p, ν, P ) is the

distribution of the time from starting until absorption for this Markov chain.
In particular, when P is a zero matrix, the associated phase-type distribution
is a hyperexponential distribution with d phases.

In the GI/Ph/n + GI queue, there are n identical servers working in
parallel. The customer arrival process is a renewal process. Upon arrival, a
customer enters service immediately if an idle server is available. Otherwise,
he waits in a buffer with infinite waiting room that holds a first-in-first-out
queue. The service times form a sequence of iid random variables, following
a phase-type distribution. When a server finishes serving a customer, the
server takes the leading customer from the buffer. When the buffer is empty,
the server begins to idle. Each customer has a patience time. The patience
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times are iid following a general distribution. When a customer’s waiting
time in the buffer exceeds his patience time, the customer abandons the
system with no service.

Let λ be the arrival rate and 1/µ be the mean service time. The system
is assumed to be operated in the QED regime, i.e., both the arrival rate λ
and the number of servers n are large, while the traffic intensity ρ = λ/(nµ)
is close to 1. Because customer abandonment is allowed, it is not necessary
to assume ρ < 1 for the system to reach a steady state. For future purposes,
we put

(2.8) β =
√
n(1− ρ).

Assume that the phase-type service time distribution has parameters
(p, ν, P ). Each service time can be decomposed into a number of phases.
When a customer is in service, he must be in one of the d phases. Let Zj(t)
denote the number of customers in phase j service at t. In the steady state,
customers in service are approximately distributed among the d phases fol-
lowing distribution γ, which is given by

(2.9) γ = µR−1p and R = (I − P ′) diag(ν).

One can check that
∑d

j=1 γj = 1 and γj is interpreted to be the fraction of
phase j service load on the n servers.

Suppose that all customers, including those customers waiting in the
buffer at time zero, sample their first service phases following distribution
p upon arrival. One can stratify customers in the waiting buffer according
to their first service phases. For j = 1, . . . , d, we use Wj(t) to denote the
number of waiting customers at time t whose service begins with phase j.
Then,

(2.10) Yj(t) = Zj(t) +Wj(t)

is the number of phase j customers in system, either waiting or in service.
Let Y (t) be the corresponding d-dimensional random vector and

(2.11) Ỹ (t) =
1√
n
(Y (t)− nγ).

We will approximate Ỹ = {Ỹ (t) : t ≥ 0} by a d-dimensional diffusion
process.

The GI/Ph/n + GI queue is driven by several primitive processes. Let
E = {E(t) : t ≥ 0} be the arrival process, where E(t) is the number of
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customer arrivals by time t. For j = 1, . . . , d, let Sj = {Sj(t) : t ≥ 0} be
a Poisson process with rate νj , and φj = {φj(i) : i ∈ N} be a sequence of
iid d-dimensional random vectors such that φj(i) takes eℓ with probability

Pjℓ and takes a zero vector with probability 1 − ∑d
ℓ=1 Pjℓ. Similarly, let

φ0 = {φ0(i) : i ∈ N} be a sequence of iid d-dimensional random vectors such
that φ0(i) takes eℓ with probability pℓ. For j = 0, . . . , d, define the routing
process Φj = {Φj(k) : k ∈ N} by

Φj(k) =
k

∑

i=1

φj(i).

We assume that Y (0), E, S1, . . . , Sd,Φ0, . . . ,Φd are mutually independent.
For j = 1, . . . , d, let Tj(t) be the cumulative amount of service effort

received by customers in phase j service by time t. Clearly,

(2.12) Tj(t) =

∫ t

0
Zj(s) ds for t ≥ 0.

Thus, Sj(Tj(t)) is equal in distribution to the cumulative number of phase j
service completions by time t. (For more details, please refer to Section 4.1
of [6] on a perturbed system.) Let Lj(t) be the cumulative number of phase
j customers who have abandoned the system by time t, and let L(t) be the
corresponding d-dimensional vector. One can check that the d-dimensional
process Y = {Y (t) : t ≥ 0} satisfies the following equation

(2.13) Y (t) = Y (0) + Φ0(E(t)) +

d
∑

j=1

Φj(Sj(Tj(t)))− S(T (t))− L(t),

where S(T (t)) = (S1(T1(t)), . . . , Sd(Td(t)))
′.

To derive the diffusion model, consider a scaled version of (2.13). For t ≥ 0
and j = 1, . . . , d, we define several scaled processes by

Ẽ(t) =
1√
n
(E(t)− λt), S̃(t) =

1√
n
(S(nt)− nνt),

Z̃(t) =
1√
n
(Z(t)− nγ), L̃(t) =

1√
n
L(t),

Φ̃0(t) =
1√
n

⌊nt⌋
∑

i=1

(φ0(i)− p), Φ̃j(t) =
1√
n

⌊nt⌋
∑

i=1

(φj(i)− pj),
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where pj is the jth column of P ′. By (2.8)–(2.13), we have

Ỹ (t) = Ỹ (0)− βµpt+ pẼ(t) + Φ̃0

(E(t)

n

)

+
d

∑

j=1

Φ̃j

(Sj(Tj(t))

n

)

− (I − P ′)S̃
(T (t)

n

)

−R

∫ t

0
Z̃(s) ds− L̃(t).

(2.14)

2.3. The diffusion model. In the diffusion model, the scaled primitive
processes in (2.14) are replaced by Brownian motions. These approxima-
tions can be justified by the functional central limit theorem. Let BE be a
one-dimensional driftless Brownian motion with variance λc2a/n, where c

2
a is

the squared coefficient of variation of the interarrival time distribution. Let
B0, . . . , Bd, BS be d-dimensional driftless Brownian motions with covariance
matrices H0, . . . ,Hd,diag(ν), respectively, where

H0
kℓ =

{

pk(1− pℓ) if k = ℓ,

−pkpℓ otherwise

and

Hj
kℓ =

{

Pjk(1− Pjℓ) if k = ℓ,

−PjkPjℓ otherwise

for j = 1, . . . , d. We assume that Ỹ (0), BE , B0, . . . , Bd, BS are mutually
independent. In the diffusion model, the above Brownian motions take the
places of the scaled primitive processes Ẽ, Φ̃0, . . . , Φ̃d, S̃, respectively.

Let Q(t) be the queue length (i.e., the number of waiting customers) at
time t and

Q̃(t) =
1√
n
Q(t).

Then, Q(t) = (e′Y (t)− n)+ or equivalently,

(2.15) Q̃(t) = (e′Ỹ (t))+.

When n is large, these waiting customers are approximately distributed
among the d phases according to distribution p (see Lemma 2 in [6]), i.e.,

Wj(t) ≈ pjQ(t) for j = 1, . . . , d.

It follows from (2.10) that

Z(t) ≈ Y (t)− pQ(t).
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By (2.11) and (2.15), this approximation has a scaled version

(2.16) Z̃(t) ≈ Ỹ (t)− p(e′Ỹ (t))+.

The following approximations are also exploited in the diffusion model:

(2.17)
E(t)

n
≈ λt

n
= ρµt,

T (t)

n
≈ (ρ ∧ 1)γt,

Sj(Tj(t))

n
≈ (ρ ∧ 1)νjγjt.

Let G(t) be the cumulative number of abandoned customers by time t
and

G̃(t) =
1√
n
G(t).

These abandoned customers are also approximately distributed among the
d phases by distribution p, i.e.,

(2.18) L̃(t) ≈ pG̃(t).

To approximate the process G̃ = {G̃(t) : t ≥ 0}, we exploit the idea of scaling
the patience time hazard rate function, which was first proposed by Reed
and Ward in [27] for single-server queues and was extended to many-server
queues by Reed and Tezcan in [26].

We assume that the patience time distribution F satisfies

(2.19) F (0) = 0

and it has a bounded hazard rate function h, given by

h(t) =
fF (t)

1− F (t)
for t ≥ 0,

where fF is the density of F . For a queue without customer abandonment,
each patience time is assumed to be infinite and h is a zero function. In the
diffusion model, the scaled abandonment process is approximated by

(2.20) G̃(t) ≈
∫ t

0

∫ (e′Ỹ (s))+

0
h
(

√
nu

λ

)

duds for t ≥ 0.

The patience time distribution is built into this approximation through its
hazard rate function. The intuition was explained in [27]: Consider the Q(s)
waiting customers in the buffer at time s. In general, only a small fraction
of customers can abandon the system when the queue is working in the
QED regime. Then by time s, the ith customer from the back of the queue
has been waiting around i/λ time units. Approximately, this customer will
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abandon the queue during the next δ time units with probability h(i/λ)δ.
Then at time s, the instantaneous abandonment rate of the queue is around
∑Q(s)

i=1 h(i/λ). By (2.11) and (2.15), the scaled abandonment rate can be
approximated by

(2.21)
1√
n

Q(s)
∑

i=1

h
( i

λ

)

≈
∫ Q̃(s)

0
h
(

√
nu

λ

)

du =

∫ (e′Ỹ (s))+

0
h
(

√
nu

λ

)

du,

from which (2.20) follows. For a many-server queue in the QED regime,
the arrival rate is on the order of O(n) and the queue length is typically
on the order of O(n1/2). The patience time distribution in a neighborhood
of zero is considered in the instantaneous abandonment rate in (2.21). This
approximation can be justified for GI/M/n+GI queues by Propositions 9.1
and 9.2 in [26]. These two propositions can be extended to GI/Ph/n +GI
queues with minor modifications to the proofs.

Using the Brownian replacement and the approximations in (2.16)–(2.20),
we obtain the following stochastic differential equation

X(t) = X(0) − βµpt+ pBE(t) +B0(ρµt) +
d

∑

j=1

Bj((ρ ∧ 1)νjγjt)

− (I − P ′)BS((ρ ∧ 1)γt)−R

∫ t

0
(X(s) − p(e′X(s))+) ds

− p

∫ t

0

∫ (e′X(s))+

0
h
(

√
nu

λ

)

duds,

(2.22)

where the initial condition is taken to be X(0) = Ỹ (0). This stochastic
differential equation is the diffusion model for the GI/Ph/n +GI queue in
the QED regime.

We may write (2.22) into the standard form

X(t) = X(0) +

∫ t

0
b(X(s)) ds +

∫ t

0
σ(X(s)) dB(s),

where for each x ∈ R
d, the drift coefficient b is

(2.23) b(x) = −βµp−R(x− p(e′x)+)− p

∫ (e′x)+

0
h
(

√
nu

λ

)

du,



108 J. G. DAI AND S. HE

the diffusion coefficient σ is a d× d constant matrix satisfying

Σ(x) = σ(x)σ′(x)

= ρµ(c2app
′ +H0)

+ (ρ ∧ 1)

( d
∑

j=1

νjγjH
j + (I − P ′) diag(ν) diag(γ)(I − P )

)

,

(2.24)

and B is a d-dimensional standard Brownian motion. One can check that
Σ(x) is positive definite and thus satisfies (2.3). Because h is bounded, both
b and σ are Lipschitz continuous. Hence, a strong solution to (2.22) exists.

If the patience times are exponentially distributed with mean 1/α, the
hazard rate function is constant with h(t) = α for all t ≥ 0. In this case, the
diffusion model becomes

X̂(t) = X̂(0)− βµpt+ pBE(t) +B0(ρµt) +

d
∑

j=1

Bj((ρ ∧ 1)νjγjt)

− (I − P ′)BS((ρ ∧ 1)γt)−R

∫ t

0
(X̂(s)− p(e′X̂(s))+) ds

− pα

∫ t

0
(e′X̂(s))+ ds

(2.25)

with X̂(0) = Ỹ (0). When α = 0, this stochastic differential equation approx-
imates a queue without abandonment. In Section 3.2, X̂ = {X̂(t) : t ≥ 0}
will be used as an auxiliary process for choosing a reference density for the
diffusion model.

When ρ is equal to 1, X̂ is identical to the diffusion limit for G/Ph/n+GI
queues in Theorem 2 in [6]. This limit process is the strong solution of

X̌(t) = X̌(0)− βµpt+ pBE(t) +B0(µt) +

d
∑

j=1

Bj(νjγjt)

− (I − P ′)BS(γt)−R

∫ t

0
(X̌(s)− p(e′X̌(s))+) ds

− pα

∫ t

0
(e′X̌(s))+ ds.

(2.26)

More specifically, as the number of servers n goes large, the d-dimensional
process Ỹ in (2.14) converges to X̌ = {X̌(t) : t ≥ 0} in distribution under
certain conditions. This diffusion limit allows for a general patience time
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distribution and α is not merely the rate of an exponential distribution. It
is now defined by

(2.27) α = lim
t↓0

t−1F (t),

which is the patience time density at zero. In Section 3.2, we will investigate
the tail behavior of X̌ and use it to build a reference density for X̂ in (2.25).

The above two processes, X̂ in (2.25) and X̌ in (2.26), have the same drift
coefficient

b(x) = −βµp−R(x− p(e′x)+)− pα(e′x)+

that is a piecewise linear function of x ∈ R
d. Both of them are d-dimensional

piecewise OU processes.

3. A numerical algorithm for the stationary distribution. In this
section, we propose an algorithm for the stationary density of the diffusion
model. The generic algorithm, introduced in Section 3.1, follows the one
developed in [5]. The convergence of the algorithm is controlled by the ref-
erence density. In Section 3.2, we discuss how to choose a reference density
by investigating the tail behavior of the diffusion model. The finite element
implementation of the algorithm follows [30]. We leave it to the appendix.

3.1. The generic algorithm. Consider the diffusion process X in (2.1).
To compute its stationary density g on R

d, we adopt a notion called the
reference density that was first introduced in [5]. A reference density for g
is a positive function r on R

d such that

(3.1)

∫

Rd

r(x) dx <∞

and

(3.2)

∫

Rd

q2(x)r(x) dx <∞,

where

q(x) =
g(x)

r(x)
for each x ∈ R

d

is called the ratio function. Such a function r exists because g itself satisfies
both (3.1) and (3.2). For the rest of Section 3.1, we assume that a reference
density r has been determined and remains fixed, and that

(3.3)

∫

Rd

b2j (x)r(x) dx <∞ and

∫

Rd

Σ2
jℓ(x)r(x) dx <∞
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for j, ℓ = 1, . . . , d. Since both b and σ are Lipschitz continuous, condition
(3.3) is satisfied if

(3.4)

∫

Rd

|x|4 r(x) dx <∞.

Let L2(Rd, r) be the space of all square-integrable functions on R
d with

respect to the measure that has density r, i.e.,

L2(Rd, r) =
{

f ∈ B(Rd) :

∫

Rd

f2(x)r(x) dx <∞
}

where B(Rd) is the set of Borel-measurable functions on R
d. We define an

inner product on L2(Rd, r) by

〈f, f̂〉 =
∫

Rd

f(x)f̂(x)r(x) dx for f, f̂ ∈ L2(Rd, r).

With this inner product, L2(Rd, r) is a Hilbert space and the induced norm
is given by

(3.5) ‖f‖ = 〈f, f〉1/2 for each f ∈ L2(Rd, r).

Condition (3.2) is equivalent to q ∈ L2(Rd, r) and assumption (3.3) ensures
that Gf ∈ L2(Rd, r) for all f ∈ C2

b (R
d). In this space, the basic adjoint

relationship in (2.7) is equivalent to

(3.6) 〈Gf, q〉 = 0 for all f ∈ C2
b (R

d).

If we are able to obtain q by (3.6) with a fixed reference density, the sta-
tionary density can be computed via g(x) = q(x)r(x) for x ∈ R

d.
Let

(3.7) H = the closure of {Gf : f ∈ C2
b (R

d)}

where the closure is taken in the norm in (3.5). As a subspace of L2(Rd, r),
H is orthogonal to q. Let c be a constant function with c(x) = 1 for all
x ∈ R

d. Clearly, c ∈ L2(Rd, r) but c /∈ H because

(3.8) 〈c, q〉 =
∫

Rd

g(x) dx = 1.

Let

(3.9) c̄ = argmin
f∈H

‖c− f‖
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be the projection of c ontoH. Then, c−c̄must be orthogonal toH. Assuming
that Conjecture 1 holds and that X has a unique stationary density, we have
q = κc(c− c̄) for some normalizing constant κc ∈ R. By (3.8),

κ−1
c = 〈c, c − c̄〉 = 〈c− c̄, c− c̄〉+ 〈c̄, c− c̄〉 = ‖c− c̄‖2 .

Hence, the ratio function is

(3.10) q =
c− c̄

‖c− c̄‖2
.

To obtain q using (3.10), we need compute c̄, the projection of c onto H.
The space H is linear and infinite-dimensional (i.e., a basis of H contains
infinitely many functions). In general, solving (3.9) in an infinite-dimensional
space is impossible. In the algorithm, we use a finite-dimensional subspace
Hk to approximate H.

Suppose that there is a sequence of finite-dimensional subspaces {Hk :
k ∈ N} of H such that Hk → H in L2(Rd, r) as k → ∞. Here, Hk → H in
L2(Rd, r) means that for each f ∈ H, there exists a sequence of functions
{ϕk : k ∈ N} with ϕk ∈ Hk such that ‖ϕk − f‖ → 0 as k → ∞. Let

(3.11) c̄k = argmin
f∈Hk

‖c− f‖

be the projection of c onto Hk. By Proposition 7 in [5], we have the following
approximation result.

Proposition 1. Let r be a positive function on R
d that satisfies (3.1)

and (3.2). Let {Hk : k ∈ N} be a sequence of finite-dimensional subspaces of
H such that Hk → H in L2(Rd, r) as k → ∞. Let c be the constant function
with c(x) = 1 for all x ∈ R

d and c̄k be the projection of c on Hk given by
(3.11). Assume that Conjecture 1 is true. Then,

‖qk − q‖ → 0 as k → ∞,

where qk = (c− c̄k)/ ‖c− c̄k‖2. Moreover, if r is bounded on R
d, then

∫

Rd

(gk(x)− g(x))2 dx→ 0 as k → ∞,

where gk(x) = qk(x)r(x) for each x ∈ R
d.

As in [5], we choose

(3.12) Hk = {Gf : f ∈ Ck}
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for some finite-dimensional space Ck. We will discuss how to construct Ck

using a finite element method in the appendix. For notational convenience,
we omit the subscript k when k is fixed. The finite-dimensional function
space is thus denoted by C. Let mC be the dimension of C and {fi : i =
1, . . . ,mC} be a basis of C. We assume that the family {Gfi : i = 1, . . . ,mC}
is linearly independent in L2(Rd, r). Then,

(3.13) c̄k =

mC
∑

i=1

uiGfi for some ui ∈ R and i = 1, . . . ,mC .

Using the fact 〈Gfi, c − c̄k〉 = 0 for i = 1, . . . ,mC , we obtain a system of
linear equations

(3.14) Au = v

where

(3.15) Aiℓ = 〈Gfi,Gfℓ〉, u = (u1, . . . , umC
)′, vi = 〈Gfi, c〉.

By the linear independence assumption, the mC ×mC matrix A is positive
definite. Thus, u = A−1v is the unique solution to (3.14). Once the vector u is
obtained, we can compute the projection c̄k by (3.13). Finally, the stationary
density can be approximated via

g(x) ≈ gk(x) = r(x)
c(x) − c̄k(x)

‖c− c̄k‖2
for each x ∈ R

d.

In [5], the authors employed multinominals of orders up to k to construct
the space Ck. This choice appears to be numerically unstable. The approx-
imation error is significant when k is small, say, k ≤ 5. As k increases,
the round-off error in solving (3.14) increases and ultimately dominates the
approximation error. Although their implementation produces accurate es-
timates for the stationary means of SRBMs, it sometimes produces poor
estimates for the stationary distributions. In this paper, we construct the
space Ck using the finite element method as in [30]. This implementation
yields more stable output. Please refer to the appendix.

3.2. Choosing a reference density. The reference density controls the
convergence of the proposed algorithm. As long as the positive function r
satisfies (3.1) and (3.2), the output of the proposed algorithm will converge
to the stationary density (see Proposition 1 in Section 3.1 and Proposition 3
in the appendix). For choosing an appropriate reference density, some con-
siderations are as follows.



NUMERICAL ANALYSIS OF DIFFUSION MODEL 113

First, to be a reference density, the candidate function r must satisfy (3.2)
even though the stationary density g is unknown. This requires that r have
a comparable or slower decay rate than g. When g is bounded, its decay rate
is sufficient to determine a function r that satisfies (3.2).

Second, the most computational effort in our algorithm is construct-
ing and solving the system of linear equations (3.14). By Proposition 3 in
the appendix, the finite-dimensional space Hk approximates the infinite-
dimensional space H better as k increases, thus reducing the approximation
error. On the other hand, as the dimension of Hk increases, constructing
and solving (3.14) requires more computation time and memory space. The
condition number of the matrix A in (3.14) also gets worse as the dimension
of Hk becomes large. This yields higher round-off error. A “good” reference
density should balance these two types of error. With such a reference den-
sity, it is possible to have small approximation error even if the dimension
of Hk is moderate.

Intuitively, when r is “close” to the stationary density g, both the ratio
function q and the projection c̄ are “close” to constant functions. We can
thus expect that the space Hk with a moderate dimension is able to produce
a satisfactory approximation. All these observations motivate us to explore
the tail behavior of the diffusion model.

3.2.1. Tail behavior of the limit queue length process. Let us focus on the
limiting tail behavior of the queue length process in a many-server queue.
It will be used to estimate the tail of the diffusion model.

Consider a sequence of GI/GI/n + GI queues in the QED regime. In
each queue, the service times are iid following a general distribution. If
all patience times are infinite, they are GI/GI/n queues without customer
abandonment. We assume that these queues, each indexed by the number
of servers n, have the same service and patience time distributions. Let λn
be the arrival rate of the nth system. To mathematically define the QED
regime, we assume that

(3.16) lim
n→∞

λn
n
> 0

and

(3.17) lim
n→∞

√
n(1− ρn) = β̌ for some β̌ ∈ R,

where ρn = λn/(nµ) is the traffic intensity of the nth system.
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Assume that all these queues are in their steady states. Let Nn(∞) be
the stationary number of customers in the nth system and

Ñn(∞) =
1√
n
(Nn(∞)− n).

For GI/GI/n queues in the QED regime, the limit queue length in the
steady state was studied in [10] by Gamarnik and Momčilović, where the
service time distribution is assumed to be lattice-valued on a finite support.
The authors first showed that Ñn(∞) converges to a random variable Ň(∞)
in distribution as n→ ∞, and then proved that

(3.18) lim
z→∞

1

z
logP[Ň(∞) > z] = − 2β̌

c2a + c2s
,

where c2a and c2s are the squared coefficients of variation of the interarrival
and service time distributions, respectively. In (3.18), the decay rate does
not depend on the service time distribution beyond its first two moments.
Recently, this result has been extended by Gamarnik and Goldberg in [9] to
GI/GI/n queues with a general service time distribution.

Assume that the piecewise OU process X̌ in (2.26) has a stationary distri-
bution. Let X̌(∞) be the corresponding d-dimensional random vector in the
steady state. When α = 0 and d = 1, X̌ is the diffusion limit for GI/M/n
queues without customer abandonment. In this case, the service time dis-
tribution is exponential and Ň(∞) = X̌(∞). It was proved in [13] that the
stationary density of X̌(∞) has a closed-form expression

(3.19) ǧ(z) =















a1 exp

(

− (z + β̌)2

1 + c2a

)

if z < 0,

a2 exp
(

− 2β̌z

1 + c2a

)

if z ≥ 0,

where a1 and a2 are normalizing constants making ǧ continuous at zero. The
decay rate of ǧ in (3.19) is consistent with (3.18). Both formulas suggest that
Ň(∞) has an exponential tail on the right side.

For a GI/GI/n + GI queue with many servers and customer abandon-
ment, the limiting tail behavior of Ñn(∞) remains unknown except for very
simple cases. When α > 0 and d = 1, the diffusion limit X̌ in (2.26) is
a one-dimensional piecewise OU process. It admits a piecewise Gaussian
stationary density

(3.20) ǧ(z) =















a3 exp

(

− (z + β̌)2

1 + c2a

)

if z < 0,

a4 exp

(

− α(z + α−1µβ̌)2

µ(1 + c2a)

)

if z ≥ 0,
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where a3 and a4 are normalizing constants that make ǧ continuous at zero.
See [2]. In particular, it was proved in [11] that the stationary density of
the diffusion limit of M/M/n +M queues follows (3.20) with c2a = 1. In
contrast to the exponential tail in (3.18), the stationary density in (3.20)
has a Gaussian tail on the right.

Observing (3.18) and (3.20), we conjecture that for GI/GI/n+GI queues
in the QED regime, the limiting tail behavior of Ñn(∞) depends on the
service time distribution only through its first two moments and on the
patience time distribution only through its density at zero.

Conjecture 2. Consider a sequence of GI/GI/n+GI queues that sat-
isfies (2.19), (3.16), and (3.17). Assume that the patience time distribution
has a positive density at zero, i.e., α > 0 in (2.27). Assume further that the
interarrival and service time distributions satisfy the T0 assumptions (i)–(iii)
in Section 2.1 of [9]. Then, (a) Nn(∞) exists for each n; (b) the sequence of
random variables {Ñn(∞) : n ∈ N} converges to a random variable Ň(∞)
in distribution; (c) Ň(∞) satisfies

lim
z→∞

1

z2
log P[Ň(∞) > z] = − α

µ(c2a + c2s)
.

The intuition below may help understand why the conjectured decay rate
is Gaussian. When Ň(∞) > z for some z > 0, there are more than n1/2z
waiting customers in the associated queue, where each waiting customer
is “racing” to abandon the system. At any time, the instantaneous aban-
donment rate is approximately proportional to the queue length. In such a
system, the customer departure process, including both service completions
and customer abandonments, behaves as if the system is a queue with infi-
nite servers. It is known that in an infinite-server queue, the limit process for
the scaled number of customers has a Gaussian stationary distribution. See,
e.g., Theorem 4.1 in [15] forM/M/∞ queues and the corollary of Theorem 3
in [31] for GI/Ph/∞ queues. Thus, one can expect that the tail of the limit
queue length for queues with abandonment is also Gaussian, which decays
much faster than the exponential tail for queues without abandonment.

3.2.2. A reference density for the piecewise OU process in (2.25). Let us
build a reference density for the piecewise OU process X̂ in (2.25). It is the
diffusion model for the GI/Ph/n +M queue with an exponential patience
time distribution. In Section 3.2.3, we will use an auxiliary GI/Ph/n +M
queue to build a reference density for the diffusion model (2.22).

In the QED regime, the traffic intensity ρ is close to 1. The tail behavior
of X̂ in (2.25) is thus expected to be comparable to that of the diffusion
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limit X̌ in (2.26). In the steady state, the diffusion limit X̌ satisfies

Ň(∞) = e′X̌(∞).

The discussion in Section 3.2.1 has given us ample evidence of the tail be-
havior of P[Ň(∞) > z] as z → ∞. Although the left tail P[Ň(∞) < −z]
as z → ∞ remains unknown when d > 1, our numerical experiments sug-
gest that this tail is not sensitive to the service time distribution beyond its
mean. Thus, we use the left tail for a queue with an exponential service time
distribution to construct the reference density. We propose to use a product
reference density

(3.21) r(x) =

d
∏

j=1

rj(xj) for x ∈ R
d.

When α = 0 and ρ < 1 in (2.25), there is no abandonment in the queue.
Based on (3.18) and (3.19), we choose

(3.22) rj(z) =















exp

(

− (z + γjβ)
2

1 + c2a

)

if z < 0,

exp

(

− 2βz

c2a + c2s
−

γ2j β
2

1 + c2a

)

if z ≥ 0,

where β is given by (2.8). The function rj has an exponential tail on the
right and a Gaussian tail on the left. The reference density given by (3.21)
and (3.22) satisfies condition (3.4). In (3.22), we set the shift term for z < 0
to be γjβ according to the following observation. In the associated queue, β
is the scaled mean number of idle servers and γj is the fraction of phase j
service load. In the steady state, one can expect that Ỹj(t), the centered and
scaled number of phase j customers, is around −γjβ.

When α > 0 in (2.25), the associated queue has abandonment. By (3.20)
and Conjecture 2, we choose
(3.23)

rj(z) =















exp

(

− (z + γjβ)
2

1 + c2a

)

if z < 0,

exp

(

− α(z + pjα
−1µβ)2

µ(c2a + c2s)
+
p2jα

−1µβ2

c2a + c2s
−

γ2j β
2

1 + c2a

)

if z ≥ 0,

whose two tails are both Gaussian but have different decay rates. This refer-
ence density also satisfies (3.4). In (3.23), the shift term for z ≥ 0 is taken to
be pjµβ/α because of the observation below. When ρ ≥ 1, the throughput
of the queue is nearly nµ. Let q0 be the scaled queue length in equilibrium,
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i.e., the arrival and departure rates of the system are balanced when the
queue length is around n1/2q0. Because in this case the abandonment rate is
αn1/2q0, we must have λ = nµ+αn1/2q0, or q0 = −µβ/α by (2.8). Since the
fraction of phase j waiting customers is around pj, Ỹj(t) is around −pjµβ/α
as the queue reaches the steady state.

3.2.3. A reference density for the diffusion model. With a general pa-
tience time distribution, the tail behavior of X in (2.22) is unknown. In
some cases, the diffusion limit in (2.26) can still help us find a reference
density. The principle is again to ensure that the candidate function has a
comparable or slower decay rate than the stationary density of X. For that,
we build an auxiliary queue that shares the same arrival process and service
times with the GI/Ph/n + GI queue, but the auxiliary queue may have
no abandonment or have an exponential patience time distribution. Let X̂
be the diffusion process in (2.25) for the auxiliary queue. If X̂ has a slower
decay rate than X, a reference density of X̂ must be a reference density of
X, too.

When ρ < 1, the auxiliary queue is a GI/Ph/n queue, so α = 0 in
(2.25). Intuitively, the queue length decays faster in the GI/Ph/n + GI
queue than in the auxiliary queue since the latter has no abandonment. As
a consequence, X̂ has a slower decay rate than X and the reference density
given by (3.21) and (3.22) for X̂ can be used for the current model.

When ρ > 1, the auxiliary queue is a GI/Ph/n +M queue. Let α > 0
be the rate of the exponential patience time distribution, which is to be
determined in order for X̂ to have an appropriate decay rate. For that, we
need investigate the abandonment process of the GI/Ph/n +GI queue.

Let h(ℓ) be the ℓth order derivative of the hazard rate function h. Assume
that h is m times continuously differentiable in a neighborhood of zero for
some nonnegative integer m, and that among ℓ = 0, . . . ,m, there is at least
one h(ℓ)(0) 6= 0. We follow the convention that h(0)(0) = h(0). Let ℓ0 be the
smallest nonnegative integer such that h(ℓ0)(0) 6= 0. For z > 0 in a small
neighborhood of zero, the ℓ0th degree Taylor’s approximation of h is

(3.24) h(z) ≈ h(ℓ0)(0)zℓ0

ℓ0!
,

which, along with (2.15) and (2.20), implies that the scaled abandonment
process can be approximated by

G̃(t) ≈ nℓ0/2h(ℓ0)(0)

λℓ0(ℓ0 + 1)!

∫ t

0
Q̃(s)ℓ0+1 ds.
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This approximation implies that the abandonment process depends on the
hazard rate function primarily through h(ℓ0)(0), the nonzero derivative at
the origin with the lowest order. It also implies that the scaled abandonment
rate at time t is approximately

(3.25)

∫ Q̃(t)

0
h
(

√
nu

λ

)

du ≈ nℓ0/2h(ℓ0)(0)

λℓ0(ℓ0 + 1)!
Q̃(t)ℓ0+1.

With a general hazard rate function, the scaled queue length in equilib-
rium q0 satisfies

(3.26) λ = nµ+
√
n

∫ q0

0
h
(

√
nu

λ

)

du.

If (3.25) holds, it turns out to be

λ ≈ nµ+
n(ℓ0+1)/2h(ℓ0)(0)

λℓ0(ℓ0 + 1)!
qℓ0+1
0 ,

which gives us

(3.27) q0 ≈
1√
n

(

λℓ0(ℓ0 + 1)!(λ − nµ)

h(ℓ0)(0)

)1/(ℓ0+1)

.

The scaled queue length process fluctuates around this equilibrium length.
Correspondingly, the instantaneous abandonment rate changes around an
equilibrium level, too. This observation motivates us to take

(3.28) α =
nℓ0/2h(ℓ0)(0)

λℓ0(ℓ0 + 1)!
qℓ00

for the auxiliary GI/Ph/n+M queue. With this setting, the original queue
and the auxiliary queue have comparable abandonment rates when the
scaled queue length is close to q0. For any q1 > q0, when the scaled queue
length is q1 in both queues, the abandonment rate in the auxiliary queue is
lower because

αq1 <
nℓ0/2h(ℓ0)(0)

λℓ0(ℓ0 + 1)!
qℓ0+1
1 .

Hence, when the queue length is longer than q0, it decays slower in the
auxiliary queue than in the original queue. Consequently, the decay rate of
X̂ is slower than that of X and the reference density of X̂ can work for the
diffusion model.
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The above discussion suggests a product reference density in (3.21) with

(3.29) rj(z) =















exp

(

− (z + γjβ)
2

1 + c2a

)

if z < 0,

exp

(

− α(z − pjq0)
2

µ(c2a + c2s)
+

αp2jq
2
0

µ(c2a + c2s)
−

γ2j β
2

1 + c2a

)

if z ≥ 0,

where q0 follows (3.27) and α follows (3.28).
The above reference density fails when ρ = 1 and ℓ0 > 0, because q0 = 0

by (3.27) and thus α is zero in (3.28). In this case, we can still choose a
reference density by (3.21) and (3.29) but using a traffic intensity ρ that is
slightly larger than 1. Because the tail of the queue length becomes heavier
as ρ increases, a reference density for the diffusion model with ρ > 1 must
have a comparable or slower decay rate than the stationary density of the
model with ρ = 1.

The reference density given by (3.21) and (3.29) that exploits the lowest-
order nonzero derivative at the origin may fail when the hazard rate function
has a rapid change near the origin. In this case, the Taylor’s approximation
in (3.24) may not be satisfactory when the queue length is not short enough.
Such an example is discussed in Section 4.4. In addition, the above procedure
cannot determine a reference density when all h(ℓ)(0)’s are zero, i.e., the
hazard rate function is zero in a neighborhood of the origin. This issue will
be explored in the future.

4. Numerical examples. Several numerical examples are presented
in this section. In each example, we compute the stationary distribution of
the number of customers in a many-server queue using the diffusion model
and the proposed algorithm. We assume that the customer arrivals follow a
Poisson process and the service times follow a two-phase hyperexponential
distribution with mean 1, i.e., the system is an M/H2/n + GI queue with
c2a = 1 and µ = 1. In such a queue, there are two types of customers. The
service times of either type are iid following an exponential distribution,
whereas the mean service times of these two types are different. We ap-
proximate this queue by a two-dimensional diffusion process X. The results
computed using the diffusion model are compared with the results obtained
either by the matrix-analytic method or by simulation. Please refer to [20]
and [22] for the implementation of the matrix-analytic method. All simula-
tion results are obtained by averaging 20 runs and in each run, the queue is
simulated for 1.0× 105 time units.

In the proposed algorithm, all numerical integration is implemented using
a Gauss–Legendre quadrature rule. See [19]. When computing Aiℓ or vi in
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(3.15), the integrand is evaluated at 8 points in each dimension. In the
numerical examples, the tail probability

(4.1) P[X1(∞) +X2(∞) > z] =

∫

{x∈R2:x1+x2>z}
g(x) dx for some z ∈ R

is also evaluated, whereX(∞) = (X1(∞),X2(∞))′ is a two-dimensional ran-
dom vector having probability density g. The integral in (4.1) is computed
by adding up the integrals over the finite elements that intersect with the
set {x ∈ R

2 : x1 + x2 > z}, and the integral over each finite element is
again computed using a Gauss–Legendre quadrature formula. Because the
indicator function has jumps inside certain finite elements, we use 64 points
in each dimension when evaluating the integrand over each finite element.

4.1. Example 1: an M/H2/n + M queue. Consider an M/H2/n + M
queue that has an exponential patience time distribution. We are interested
in such a queue because its customer-count process N = {N(t) : t ≥ 0}
is a quasi-birth-death process, where N(t) is the number of customers in
system at time t. The stationary distribution of that can be computed by
the matrix-analytic method.

In this example, we take α = 0.5 for the rate of the exponential patience
time distribution and take

p = (0.9351, 0.0649)′ and ν = (9.354, 0.072)′

for the hyperexponential service time distribution. The mean service time
of the second-type customers is more than 100 times longer than that of the
first type. Although over 93% of customers are of the first type, the fraction
of its workload is merely 10%, i.e., γ = (0.1, 0.9)′. Such a distribution has a
large squared coefficient of variation c2s = 24.

Because h(t) = α for all t ≥ 0, X in (2.22) is a two-dimensional piecewise
OU process. Because the service time distribution is hyperexponential, P is a
zero matrix and thus R = diag(ν). By (2.23) and (2.24), the drift coefficient
of X is

(4.2) b(x) =

(

−p1µβ − ν1(x1 − p1(x1 + x2)
+)− p1α(x1 + x2)

+

−p2µβ − ν2(x2 − p2(x1 + x2)
+)− p2α(x1 + x2)

+

)

and the covariance matrix of the diffusion coefficient is

(4.3) Σ(x) =

(

p1µ(ρ+ (ρ ∧ 1)) 0
0 p2µ(ρ+ (ρ ∧ 1))

)

for all x ∈ R
2.
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(a) ρ = 1.141 and n = 50
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(b) ρ = 1.045 and n = 500

Fig 1: The stationary distribution of the customer number in the M/H2/n + M queue,
computed (i) by the finite element algorithm for the diffusion model with the reference
density in (3.21) and (3.23), and (ii) by the matrix-analytic method.

We consider three scenarios, in all of which the queue is overloaded. In
the first two scenarios, there are n = 50 and 500 servers, respectively. The
arrival rates are λ = 57.071 and 522.36, or equivalently, ρ = 1.141 and 1.045.
By (2.8), β = −1 in both scenarios. The third scenario, with n = 20 servers,
will be presented shortly.

To compute the stationary distribution of X, we use a product reference
density given by (3.21) and (3.23). To generate basis functions by the finite
element method, we set the truncation rectangle K = [−7, 32] × [−7, 32],
which is obtained by (A.1) with ε0 = 10−7, and use a lattice mesh in which
all finite elements are 0.5 × 0.5 squares.

Once the stationary density of X is obtained, one can approximately
produce the distribution of N(∞), the stationary number of customers in
system. Note that the probability density of X1(∞) +X2(∞) is given by

gN (z) =

∫ +∞

−∞
g(x1, z − x1) dx1 for z ∈ R.

The distribution of N(∞) can be approximated by

P[N(∞) = i] ≈ 1√
n
gN

( i− n√
n

)

for i = 0, 1, . . . .

For the first two scenarios, the distributions of N(∞) obtained by the dif-
fusion model are illustrated in Figure 1. In the same figure, the station-
ary distributions computed by the matrix-analytic method are plotted, too.
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We see good agreement. Comparing the two scenarios, we also find out
that the diffusion model is more accurate when the number of servers n is
larger. This observation is consistent with the many-server limit theorem for
G/Ph/n +GI queues in [6].

The matrix-analytic method can be used in this example because the
three-dimensional process {(Q(t), Z1(t), Z2(t)) : t ≥ 0} forms a continuous-
time Markov chain and the customer-count process N is a quasi-birth-death
process. Clearly, N(t) = Q(t) + Z1(t) + Z2(t). At time t, N is said to be
at level ℓ if N(t) = ℓ. In this example, level ℓ consists of ℓ + 1 states if
ℓ ≤ n and it contains n + 1 states if ℓ > n. In the matrix-analytic method,
the transition rate matrices between adjacent levels are used to compute
the stationary distribution of N iteratively. Each iteration requires O(n3)
arithmetic operations. For this queue, the transition rate matrices at differ-
ent levels are different because the abandonment rate depends on the queue
length. For implementation purposes, we assume in the algorithm that at
level ℓ > ℓ0 for some ℓ0 ≫ n, the abandonment rate at level ℓ is α(ℓ0 − n)
rather than α(ℓ− n). In other words, the transition rate matrices at level ℓ
are invariant with respect to ℓ when ℓ > ℓ0. We take ℓ0 = n + 2000 in all
numerical examples. The extra error caused by this modification is negligi-
ble, because in this queue, the queue length is on the order of O(n1/2) and
the chance of the customer number exceeding ℓ0 is extremely rare.

To investigate the diffusion model quantitatively, we list some steady-state
performance measures in Table 1. They include the mean queue length, the
fraction of abandoned customers, and the probabilities that the number of
customers exceeds certain levels. Using the diffusion model,

the mean queue length ≈
√
n

∫

R2

(x1 + x2)
+g(x) dx

and

the mean number of idle servers ≈
√
n

∫

R2

(x1 + x2)
−g(x) dx.

It follows from the latter approximation that

the abandonment fraction ≈ 1− µ

λ

(

n−
√
n

∫

R2

(x1 + x2)
−g(x) dx

)

.

In the table, the tail probability P[N(∞) > ℓ] is approximated by

P[N(∞) > ℓ] ≈ P

[

X1(∞) +X2(∞) >
1√
n
(ℓ− n)

]

for ℓ = 0, 1, . . . .
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Table 1
Performance measures of the M/H2/n+M queue, computed (i) by the finite element

algorithm for the diffusion model with the reference density in (3.21) and (3.23), and (ii)
by the matrix-analytic method

(a) ρ = 1.141 and n = 50

Diffusion Matrix-analytic

Mean queue length 17.27 17.16
Abandonment fraction 0.1512 0.1503
P[N(∞) > 45] 0.8675 0.8523
P[N(∞) > 50] 0.6785 0.6726
P[N(∞) > 100] 0.08700 0.07436
P[N(∞) > 130] 0.008662 0.003299

(b) ρ = 1.045 and n = 500

Diffusion Matrix-analytic

Mean queue length 54.17 54.05
Abandonment fraction 0.05181 0.05173
P[N(∞) > 470] 0.9701 0.9694
P[N(∞) > 500] 0.6838 0.6818
P[N(∞) > 600] 0.2244 0.2229
P[N(∞) > 750] 0.008233 0.006395

and P[X1(∞) + X2(∞) > (ℓ − n)/
√
n] is computed via (4.1). In both sce-

narios, the diffusion model produces satisfactory numerical estimates.
The computational complexity of the proposed algorithm, whether in

computation time or in memory space, does not change with the number of
servers n. In contrast, the matrix-analytic method becomes computationally
expensive when n is large. In particular, the memory usage becomes a serious
constraint when a huge number of iterations are required. For the n = 500
scenario in this example, it took around 1 hour to finish the matrix-analytic
computation and the peak memory usage is nearly 5GB. Using the diffusion
model and the proposed algorithm, it took less than 1 minute and the peak
memory usage is less than 200MB on the same computer. See Section 5.4
for more discussion on the computational complexity.

Although the diffusion model is motivated and derived from the theory of
many-server queues, it is still relevant for a queue with a modest number of
servers. In the third scenario, there are n = 20 servers and the arrival rate
is λ = 22.24. Thus, ρ = 1.112 and β = −0.5. In the proposed algorithm,
we keep the same truncation rectangle and lattice mesh as in the previous
two scenarios, and the reference density is again from (3.21) and (3.23).
As illustrated in Figure 2, the diffusion model can still capture the exact
stationary distribution for a queue with as few as twenty servers.
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Fig 2: The stationary distribution of the customer number in the M/H2/n+M queue, with
ρ = 1.112 and n = 20, computed (i) by the finite element algorithm for the diffusion model
with the reference density in (3.21) and (3.23), and (ii) by the matrix-analytic method.

4.2. Example 2: an M/H2/n queue. In this example, an M/H2/n queue
without abandonment is considered. The hyperexponential service time dis-
tribution has

p = (0.5915, 0.4085)′ and ν = (5.917, 0.454)′ .

Thus, c2s = 3 and γ = (0.1, 0.9)′ . Because there is no abandonment, we must
take ρ < 1 in order for the system to reach the steady state.

In the diffusion model (2.22), the hazard rate function h is constantly zero.
The drift and diffusion coefficients of X are given by (4.2) and (4.3) with
α = 0. The first scenario has n = 50 servers and the second scenario has n =
500 servers. The respective arrival rates are λ = 42.929 and 477.64. Hence,
ρ = 0.8586 and 0.9553, both yielding β = 1. The product reference density
is given by (3.21) and (3.22). With ε0 = 10−7, the truncation rectangle is
set by (A.1) to be K = [−7, 35] × [−7, 35], which is divided into 0.5 × 0.5
finite elements.

The stationary distribution of the number of customers in system is shown
in Figure 3. In both scenarios, the diffusion model produces a good approx-
imation of the result by the matrix-analytic method. As in the previous ex-
ample, the diffusion model is more accurate when the system scale is larger.
Several performance measures in the steady state are listed in Table 2. As in
Table 1, satisfactory agreement can be found between the two approaches.

The third scenario has n = 20 servers with arrival rate λ = 17.76. Then,
ρ = 0.8882 and β = 0.5. With ε0 = 10−7, the truncation rectangle is taken
to be K = [−7, 79]× [−7, 79]. The lattice mesh consists of 0.5×0.5 finite ele-
ments. The distribution of N(∞) is shown in Figure 4. For a queue without
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(a) ρ = 0.8586 and n = 50
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(b) ρ = 0.9553 and n = 500

Fig 3: The stationary distribution of the customer number in the M/H2/n queue, com-
puted (i) by the finite element algorithm for the diffusion model with the reference density
in (3.21) and (3.22), and (ii) by the matrix-analytic method.

Table 2
Performance measures of the M/H2/n queue, computed (i) by the finite element

algorithm for the diffusion model with the reference density in (3.21) and (3.22), and (ii)
by the matrix-analytic method

(a) ρ = 0.8586 and n = 50

Diffusion Matrix-analytic

Mean queue length 2.267 2.419
P[N(∞) > 40] 0.6908 0.6578
P[N(∞) > 50] 0.2072 0.2012
P[N(∞) > 70] 0.03395 0.03655
P[N(∞) > 100] 0.003537 0.003494

(b) ρ = 0.9553 and n = 500

Diffusion Matrix-analytic

Mean queue length 8.753 8.800
P[N(∞) > 450] 0.9038 0.9005
P[N(∞) > 500] 0.2285 0.2263
P[N(∞) > 600] 0.01910 0.01908
P[N(∞) > 700] 0.002241 0.001903

abandonment, the diffusion model is still useful when the number of servers
is modest.

4.3. Example 3: an M/H2/n + Ek queue. Consider an M/H2/n + Ek

queue, where k > 1 is a positive integer and +Ek signifies an Erlang-k
patience time distribution. In this queue, each patience time is the sum of k
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Fig 4: The stationary distribution of the customer number in the M/H2/n queue, with
ρ = 0.8882 and n = 20, computed (i) by the finite element algorithm for the diffusion model
with the reference density in (3.21) and (3.22), and (ii) by the matrix-analytic method.

stages and the stages are iid having an exponential distribution with mean
1/θ. In the following numerical experiments, we take k = 2 or 3 for the
Erlang-k distribution and set θ = k. As a result, the mean patience time
is 1. The hyperexponential service time distribution is taken to be identical
to that in Section 4.2.

The hazard rate function of the Erlang-k distribution is

h(t) =
θktk−1

(k − 1)!
k−1
∑

ℓ=0

θℓtℓ

ℓ!

for t ≥ 0.

For the diffusion model, it follows from (2.23) that the drift coefficient is

(4.4) b(x) =

(

−p1µβ − ν1(x1 − p1(x1 + x2)
+)− p1η(x1 + x2)

+

−p2µβ − ν2(x2 − p2(x1 + x2)
+)− p2η(x1 + x2)

+

)

where

η(z) =

∫ z

0
h
(

√
nu

λ

)

du = θz − λ√
n
log

( k−1
∑

m=0

nm/2θmzm

m!λm

)

for z ≥ 0.

The first two scenarios has n = 50 and 500 servers, respectively. Their
respective arrival rates are λ = 42.929 and 477.64. Hence, ρ = 0.8586 and
0.9553, both leading to β = 1. In the proposed algorithm, the reference
density is chosen according to (3.21) and (3.22). The truncation rectangle
is taken to be K = [−7, 35] × [−7, 35] and is divided into 0.5 × 0.5 finite
elements. Some performance estimates can be found in Table 3.
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Table 3
Performance measures of the M/H2/n+Ek queue with ρ < 1 and k = 2 or 3, computed
(i) by the finite element algorithm for the diffusion model with the reference density in

(3.21) and (3.22), and (ii) by simulation

(a) ρ = 0.8586 and n = 50

+E2 +E3

Diffusion Simulation Diffusion Simulation

Mean queue length 0.9820 1.061 1.201 1.302
Abandonment fraction 0.007974 0.008592 0.005629 0.006115
P[N(∞) > 35] 0.8881 0.8745 0.8896 0.8762
P[N(∞) > 40] 0.6755 0.6399 0.6798 0.6448
P[N(∞) > 50] 0.1671 0.1581 0.1788 0.1707
P[N(∞) > 60] 0.03238 0.03353 0.04420 0.04584

(b) ρ = 0.9553 and n = 500

+E2 +E3

Diffusion Simulation Diffusion Simulation

Mean queue length 4.960 5.048 6.455 6.569
Abandonment fraction 0.001689 0.001729 0.0007611 0.0007931
P[N(∞) > 450] 0.9003 0.8964 0.9022 0.8984
P[N(∞) > 480] 0.4759 0.4643 0.4859 0.4746
P[N(∞) > 500] 0.1995 0.1966 0.2151 0.2124
P[N(∞) > 550] 0.02798 0.02841 0.04412 0.04458

The third and fourth scenarios are for the case ρ > 1. They have n = 50
and 500 servers, and arrival rates λ = 57.071 and 522.36, respectively. Then,
ρ = 1.141 and 1.045, both having β = −1. For these two scenarios, we adopt
the reference density in (3.21) and (3.29). When k = 2, each patience time
has two stages. The hazard rate function of the patience time distribution
has h(0) = 0 and h(1)(0) = θ2, so ℓ0 = 1 in (3.27) and (3.28). Because
α in (3.28) depends on n, both the reference density and the truncation
rectangle change with n. With ε0 = 10−7, the truncation rectangle is set
to be K = [−7, 13] × [−7, 13] for n = 50 and to be K = [−7, 16] × [−7, 16]
for n = 500. When k = 3, a patience time consists of three stages. In
this case, h(0) = h(1)(0) = 0 and h(2)(0) = 8θ3, so ℓ0 = 2. We set K =
[−7, 11] × [−7, 11] for n = 50 and K = [−7, 15] × [−7, 15] for n = 500.
All truncation rectangles are partitioned into 0.5× 0.5 finite elements. The
performance estimates are listed in Table 4.

To evaluate the diffusion model, we list corresponding simulation esti-
mates of the performance measures in both tables. As in the previous ex-
amples, the diffusion model produces adequate approximations.

It seems that the matrix-analytic method can be used in this example as
the customer-count process is again a quasi-birth-death process. But this is
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Table 4
Performance measures of the M/H2/n+Ek queue with ρ > 1 and k = 2 or 3, computed
(i) by the finite element algorithm for the diffusion model with the reference density in

(3.21) and (3.29), and (ii) by simulation

(a) ρ = 1.141 and n = 50

+E2 +E3

Diffusion Simulation Diffusion Simulation

Mean queue length 15.03 14.94 19.44 19.31
Abandonment fraction 0.1332 0.1334 0.1303 0.1305
P[N(∞) > 45] 0.9568 0.9490 0.9704 0.9645
P[N(∞) > 50] 0.8780 0.8648 0.9169 0.9066
P[N(∞) > 70] 0.3325 0.3121 0.5037 0.4761
P[N(∞) > 90] 0.008153 0.009354 0.03033 0.03422

(b) ρ = 1.045 and n = 500

+E2 +E3

Diffusion Simulation Diffusion Simulation

Mean queue length 76.50 76.20 119.5 119.1
Abandonment fraction 0.04438 0.04437 0.04340 0.04337
P[N(∞) > 480] 0.9857 0.9846 0.9946 0.9940
P[N(∞) > 500] 0.9390 0.9363 0.9770 0.9756
P[N(∞) > 600] 0.3115 0.3051 0.6733 0.6645
P[N(∞) > 700] 0.0009757 0.0009658 0.04260 0.04358

impractical because the computational complexity is too high. Consider the
case that the patience time distribution is Erlang-2. Let V1(t) and V2(t) be
the respective numbers of waiting customers whose patience times are in the
first and second stages at time t. For this queue, the four-dimensional process
{(V1(t), V2(t), Z1(t), Z2(t)) : t ≥ 0} is a continuous-time Markov chain. At
level ℓ, there are ℓ+1 states if ℓ ≤ n and there are (n+1)(ℓ−n+1) states if
ℓ > n. The number of states at level ℓ is formidable when ℓ is large. Even if
we may truncate the state space using the technique described in Section 4.1,
the number of states is still too large to apply the matrix-analytic method.
In fact, except simulation and the diffusion model, we are not aware of any
numerical methods that are able to produce the estimates in Tables 3 and 4.

4.4. Example 4: an M/H2/n+H2 queue. In this example, we consider a
patience time distribution that changes rapidly near the origin. Assume that
the patience times follow a two-phase hyperexponential distribution with

p̂ = (0.9, 0.1)′ and ν̂ = (1, 200)′.

Hence, there are two types of patience times: 90% of them are exponentially
distributed with mean 1 and 10% are exponentially distributed with mean
0.005. We take the same service time distribution as in Sections 4.2 and 4.3.
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The hazard rate function of the hyperexponential patience time distribu-
tion is

h(t) =
p̂1ν̂1 exp(−ν̂1t) + p̂2ν̂2 exp(−ν̂2t)
p̂1 exp(−ν̂1t) + p̂2 exp(−ν̂2t)

for t ≥ 0.

The drift coefficient of X in (2.22) also follows (4.4) with

η(z) =

∫ z

0
h
(

√
nu

λ

)

du

= − λ√
n
log

(

p̂1 exp
(

−
√
n

λ
ν̂1z

)

+ p̂2 exp
(

−
√
n

λ
ν̂2z

))

for z ≥ 0.

In this example, we have

h(0) = p̂1ν̂1 + p̂2ν̂2 = 20.9 and h(1)(0) = −p̂1p̂2(ν̂1 − ν̂2)
2 = −3564.1.

Thus, ℓ0 = 0 and h has a steep slope near the origin. As the zeroth degree
Taylor’s approximation in (3.24) may bring on too much error, the reference
density exploiting the lowest-order nonzero derivative at the origin could be
erroneous.

To choose an appropriate reference density, an auxiliary queue is used
again. As in Section 3.2.3, the auxiliary queue is an M/H2/n +M queue
that shares the same arrival process and service times with theM/H2/n+H2

queue. Let α > 0 be the rate of the exponential patience time distribution.
We take α = ν̂1 ∧ ν̂2 so that the patience times in the auxiliary queue all
belong to the type with the longer mean. If the queue lengths are equal,
the abandonment rate in the auxiliary queue must be lower than that in
the original queue. Therefore, the queue length in the former decays slower.
A reference density designed for the auxiliary queue should also work for
the original queue. This observation leads to a reference density that follows
(3.21) and (3.29), but in this example, we take α = ν̂1 ∧ ν̂2 and solve (3.26)
to find q0.

Two scenarios with n = 50 and 500 servers are investigated. The respec-
tive arrival rates are λ = 57.071 and 522.36. Thus, ρ = 1.141 and 1.045 and
both scenarios have β = −1. By solving (3.26), we have q0 = 0.165 for the
first scenario and q0 = 0.0059 for the second scenario. The reference density
follows (3.21) and (3.29) with α = ν̂1 = 1. With ε0 = 10−7, the truncation
rectangle is K = [−7, 9] × [−7, 9], partitioned into 0.5 × 0.5 finite elements.
The performance estimates obtained by the diffusion model are compared
with the simulation results in Table 5. As in the previous examples, the
diffusion model is still accurate.
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Table 5
Performance measures of the M/H2/n+H2 queue, computed (i) by the finite element

algorithm for the diffusion model with the reference density in (3.21) and (3.29), and (ii)
by simulation

(a) ρ = 1.141 and n = 50

Diffusion Simulation

Mean queue length 4.869 4.845
Abandonment fraction 0.1504 0.1499
P[N(∞) > 40] 0.9749 0.9728
P[N(∞) > 50] 0.6377 0.6111
P[N(∞) > 60] 0.1895 0.1737
P[N(∞) > 70] 0.02568 0.02142

(b) ρ = 1.045 and n = 500

Diffusion Simulation

Mean queue length 6.359 6.413
Abandonment fraction 0.05517 0.05512
P[N(∞) > 480] 0.8929 0.8881
P[N(∞) > 500] 0.4822 0.4720
P[N(∞) > 520] 0.1074 0.1050
P[N(∞) > 550] 0.006616 0.006248

5. Implementation issues. In this section, we discuss several practi-
cal issues arising from the algorithm implementation. As an illustration, the
scenario of the M/H2/n + M queue with n = 500 servers in Section 4.1
is investigated throughout Sections 5.1–5.4. The influence of the reference
density on algorithm output, the mesh and quadrature order selection, as
well as the computational complexity of the proposed algorithm, are studied
there. An M/M/n+M queue is considered in Section 5.5. In this example,
by comparing the algorithm output with the exact performance measures of
the queue and the analytical results of the diffusion model, we show that the
error in the performance estimates is mostly from the approximate model.
In other words, the error caused by the finite element algorithm is usually
negligible.

5.1. Influence of the reference density. The reference density controls
the convergence of the algorithm. It must satisfy both (3.1) and (3.2). If
condition (3.1) does not hold, the sequence of subspaces {Hk : k ∈ N} gen-
erated by the finite element method may not converge to H in L2(Rd, r) (see
Proposition 3 in the appendix). Without condition (3.2), the ratio function
q may not be in L2(Rd, r). In either case, the output of the algorithm may
significantly deviate from the exact stationary density. To demonstrate this
issue, let us consider a “naive” reference density.
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(a) K = [−7, 10]× [−7, 10]
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(b) K = [−7, 32] × [−7, 32]

Fig 5: The stationary distribution of the customer number in the M/H2/n + M queue,
with ρ = 1.045 and n = 500, computed (i) by the finite element algorithm with the “naive”
reference density, and (ii) by the matrix-analytic method.

To produce the “naive” reference density, we consider a queue that has
the same arrival process and patience time distribution as theM/H2/n+M
queue. This new queue has an exponential service time distribution and its
mean service time is equal to that of the M/H2/n + M queue. For this
M/M/n+M queue, the diffusion model is a one-dimensional piecewise OU
process whose stationary density follows (3.20). The “naive” reference den-
sity is a product reference density in (3.21) with each rj being the stationary
density in (3.20). In other words, the “naive” reference density is obtained
by pretending the service time distribution to be exponential.

Let us apply the “naive” reference density to the finite element algorithm.
With ε0 = 10−7, the truncation rectangle is set to be K = [−7, 10]× [−7, 10]
and is partitioned into 0.5 × 0.5 finite elements. As shown in Figure 5a,
the output of the proposed algorithm noticeably deviates from the exact
stationary distribution. This is in sharp contrast to the algorithm output in
Figure 1b, which uses the proposed reference density given by (3.21) and
(3.23) and produces a perfect agreement with the exact results. To further
confirm that the “naive” reference density cannot work, we also test the
truncation rectangle K = [−7, 32] × [−7, 32], which is used in Section 4.1
along with the proposed reference density. In this case, the matrix A in
(3.14) is close to singular and its condition number is 3.52×10190. Figure 5b
manifests severe error in the algorithm output.

The hyperexponential service time distribution of the queue has c2s = 24.
Comparing (3.20) with (3.23), we can tell that the decay rate of the “naive”
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(a) 1.0× 1.0 finite elements
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(b) 0.25× 0.25 finite elements

Fig 6: The stationary distribution of the customer number in the M/H2/n + M queue,
with ρ = 1.045 and n = 500, computed (i) by the finite element algorithm using different
meshes with the reference density in (3.21) and (3.23), and (ii) by the matrix-analytic
method.

reference density is much larger than that of the proposed reference density.
If Conjecture 2 is true, one can expect that the “naive” reference density
decays much faster than the stationary density and condition (3.2) does not
hold. In this case, the ratio function q is not in L2(Rd, r). As a consequence,
the algorithm fails to produce any adequate estimate of the ratio function.

5.2. Mesh selection. When both the reference density and the truncation
hypercube are fixed, using a finer mesh may produce smaller approximation
error. However, a finer mesh yields more basis functions, which in turn lead
to a larger condition number for the matrix A in (3.14). If the condition
number of A is too large, the round-off error in solving (3.14) becomes
considerable. So a finer mesh does not necessarily yield a more accurate
output.

Let us test different meshes for the second scenario in Section 4.1. We
keep the same settings for the algorithm except the size of finite elements.
The output with 1.0 × 1.0 finite elements is plotted in Figure 6a. With
this mesh, the algorithm does not perform well at the interval where the
stationary distribution has a rapid change. We need a finer mesh to improve
the accuracy. In this case, the condition number of A is 5.70 × 1020. Recall
that to produce the curve in Figure 1b, we use a mesh consisting of 0.5 ×
0.5 finite elements. With this mesh, the condition number of A is 1.15 ×
1023. When the element size is further reduced to 0.25× 0.25, the condition
number of A grows to 7.13× 1027. As illustrated in Figure 6b, the output of
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Table 6
Performance measures of the M/H2/n+M queue, with ρ = 1.045 and n = 500,

computed (i) by the finite element algorithm using different meshes with the reference
density in (3.21) and (3.23), and (ii) by the matrix-analytic method

0.5× 0.5 0.25 × 0.25 Matrix-analytic

Mean queue length 54.17 54.17 54.05
Abandonment fraction 0.05181 0.05182 0.05173
P[N(∞) > 470] 0.9701 0.9702 0.9694
P[N(∞) > 500] 0.6838 0.6835 0.6818
P[N(∞) > 600] 0.2244 0.2241 0.2229
P[N(∞) > 750] 0.008233 0.008246 0.006395

the algorithm fits the exact stationary distribution well. When we compare
Figures 1b and 6b, however, there is barely any noticeable difference between
the algorithm outputs. To confirm that this mesh is not superior to the
one with 0.5 × 0.5 finite elements, we list several performance estimates in
Table 6. In this table, the results in Table 1b are duplicated for comparison.
The difference between the algorithm outputs using these two meshes is
negligible. Considering the modeling error from the diffusion model (which
will be discussed in Section 5.5), we can assert that using 0.5 × 0.5 finite
elements is sufficient to produce an accurate approximation for this queue.

Given an appropriate reference density and the associated truncation hy-
percube, the above discussion indicates an approach to selecting a mesh.
Beginning with two meshes, with one finer than the other, we compare the
algorithm outputs using these two meshes. If obvious difference is observed,
the coarser mesh should be discarded and a further finer mesh should be
evaluated. Continue this procedure until the difference between the outputs
of two meshes is negligible. Then, the coarser one of the remaining two is
selected as an appropriate mesh.

We would also demonstrate that with a wrong reference density, a finer
mesh cannot make the algorithm yield an adequate output. Let us go back
to the example in Section 5.1 with the “naive” reference density. We set
the truncation rectangle to be K = [−7, 32] × [−7, 32] and the size of finite
elements to be 0.25 × 0.25. The output is shown in Figure 7a. Although
the curve by the “naive” reference density appears smoother than the one
in Figure 5b with 0.5 × 0.5 finite elements, the output still fails to capture
the exact stationary distribution. This time, the condition number of A is
3.91 × 10195. There is no doubt that such an ill-conditioned matrix will
bring about huge round-off error in solving (3.14). In contrast, with the
same mesh and truncation rectangle, the algorithm yields accurate results
in Figure 6b when the proposed reference density is used. A mesh with
0.125 × 0.125 finite elements is also investigated and the algorithm output
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(a) 0.25 × 0.25 finite elements
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(b) 0.125 × 0.125 finite elements

Fig 7: The stationary distribution of the customer number in the M/H2/n + M queue,
with ρ = 1.045 and n = 500, computed (i) by the finite element algorithm using the “naive”
reference density and different meshes, and (ii) by the matrix-analytic method.

using the “naive” reference density is plotted in Figure 7b. The condition
number of A increases to 6.35 × 10198 and the algorithm misses the target
as well.

5.3. Gauss–Legendre quadrature. Before solving the linear system (3.14),
we must generate the matrix A and the vector v whose entries are given by
(3.15). A Gauss–Legendre quadrature rule is followed to compute the inte-
gral for each entry. The integral is taken over a two-dimensional rectangle
and the quadrature rule evaluates the integrand at m points in each dimen-
sion. The results are more accurate when a larger m is used. In Section 4, we
take m = 8 in the numerical examples. Here, we briefly discuss the impact
of the order m.

Several performance estimates are listed in Table 7. We keep the same
settings for the algorithm except the quadrature order in each dimension
and the size of finite elements. For the data in the first three columns,
the size of finite elements is set to be 0.5× 0.5. Clearly, the Gauss–Legendre
quadrature of order m ≥ 4 is sufficiently accurate for our purposes. To check
the joint impact of the mesh and the quadrature order, we also explore the
mesh using 0.25 × 0.25 squares, along with the quadrature order m = 16.
Compared with other estimates in the table that use coarser meshes and
lower quadrature orders, the algorithm output changes little.

5.4. Computational complexity. Let d, the dimension of the diffusion
model, be fixed. The size of A is mC ×mC where mC is the dimension of the
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Table 7
Performance measures of the M/H2/n+M queue, with ρ = 1.045 and n = 500, computed
(i) by the finite element algorithm using different quadrature orders and different meshes
with the reference density in (3.21) and (3.23), and (ii) by the matrix-analytic method

m = 4 m = 8 m = 16 m = 16 Matrix-
0.5 × 0.5 0.5× 0.5 0.5× 0.5 0.25× 0.25 analytic

Mean queue length 54.17 54.17 54.17 54.17 54.05
Abandonment fraction 0.05181 0.05181 0.05181 0.05182 0.05173
P[N(∞) > 470] 0.9701 0.9701 0.9701 0.9702 0.9694
P[N(∞) > 500] 0.6833 0.6838 0.6839 0.6835 0.6818
P[N(∞) > 600] 0.2245 0.2244 0.2244 0.2241 0.2229
P[N(∞) > 750] 0.008235 0.008233 0.008232 0.008246 0.006395

Table 8
Computation time (in seconds) of the finite element algorithm using different meshes

1.0× 1.0 0.5 × 0.5 0.25 × 0.25 0.125 × 0.125

Dimension mC 5776 23716 96100 386884
Constructing A and v 6.63 27.3 109 455
Solving (3.14) 0.0780 0.359 2.29 18.2

function space C given by (A.5) in the appendix. The matrix A is sparse.
There are at most 6d nonzero entries in each row or column. Hence, it takes
O(mC) arithmetic operations to construct A. Gaussian elimination can be
used to solve the linear system (3.14). When the basis functions are properly
ordered, the nonzero entries of A are confined to a diagonally bordered band

of width O(m
(d−1)/d
C ). Hence, solving (3.14) requires O(m

(2d−1)/d
C ) arithmetic

operations as mC → ∞.
The computation time (measured by seconds) for various meshes can be

found in Table 8, where we list both the time for constructing A and v
and the time for solving (3.14). When computing A and v, we follow a
Gauss–Legendre quadrature rule with m = 8 points in each dimension. The
truncation rectangle is set to be K = [−7, 32]× [−7, 32]. We change the size
of finite elements to have different meshes. The dimension mC increases by
around four times as the width of each finite element is reduced by half.
The proposed algorithm is tested on a laptop with a 2.66GHz Intel Core 2
Duo processor and 8GB memory. Both A and v are produced by a program
written in C++. The linear system (3.14) is solved by Matlab. These two
parts are connected via a MEX interface that comes with Matlab.

5.5. Modeling error vs numerical error. Performance estimates produced
by the proposed algorithm contain both modeling and numerical error. Mod-
eling error is present because the diffusion model is an approximation of
the many-server queue. Numerical error (including both approximation and
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Table 9
Performance measures of the M/M/n+M queue, with ρ = 1.045 and n = 500, computed
(i) by the Erlang-A formula (Exact), (ii) by (3.19) for the diffusion model (Analytical),

(iii) by the finite element algorithm designed for M/H2/n+M queues using the
reference density in (3.21) and (3.23) with c2a = c2s = 1 (Numerical A), and (iv) by the

finite element algorithm designed for M/H2/n+M queues using the reference density in
(3.21) and (3.23) with c2a = 1 and c2s = 24 (Numerical B)

Exact Diffusion
Analytical Numerical A Numerical B

Mean queue length 46.4309 46.4080 46.4072 46.4072
Abandonment fraction 0.0444433 0.0444214 0.0444216 0.0444215
P[N(∞) > 480] 0.987203 0.986631 0.986629 0.986629
P[N(∞) > 500] 0.930219 0.929269 0.929128 0.929123
P[N(∞) > 550] 0.444188 0.439271 0.439282 0.439283
P[N(∞) > 600] 0.0464741 0.0423851 0.0423975 0.0423963

round-off error) is from computation. For a many-server queue, the model-
ing error analysis of diffusion approximations has not been well studied in
the literature. A comprehensive error analysis for the numerical algorithm
is also beyond the scope of this paper. Instead, we evaluate modeling and
numerical error through an example.

Consider an M/M/n +M queue with n = 500 servers. The arrival rate
is λ = 522.36, the mean service time is 1/µ = 1, and the mean patience
time is 1/α = 2. The stationary distribution of the number of customers
in system is given by the Erlang-A formula (see [21]). Using that, we can
compute the exact performance measures of the queue. The diffusion model
for this queue is a one-dimensional piecewise OU process, whose stationary
distribution is given by (3.19) with c2a = 1. Using (3.19), we can derive
analytical expressions for the performance estimates. Hence, the modeling
error can be evaluated by comparing the analytical results with the exact
performance measures. See Table 9. To measure the two types of error, more
digits are displayed for each quantity in this table.

The corresponding performance estimates by the proposed algorithm are
also listed in Table 9. When computing the stationary density, theM/M/n+
M queue is regarded as an M/H2/n +M queue that has the same mean
service time for the two types of customers. In other words, the queue is
approximated by a two-dimensional diffusion process as in the previous nu-
merical experiments. Here, we set

p = (0.9, 0.1)′ and ν = (1, 1)′.

The reference density follows (3.21) and (3.23) with d = 2 and c2a = c2s = 1.
With ε0 = 10−7, the truncation rectangle is K = [−7, 9] × [−7, 9] and is
divided into 0.5 × 0.5 finite elements. See the column labeled “Numerical
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A” for the performance estimates. The numerical error from computation
is the difference between each performance estimate by the algorithm and
the corresponding analytical result. As the estimates from the algorithm are
very close to the analytical results, we can clearly see that in this example
the modeling error dominates and the numerical error is negligible. Note
that the modeling error increases as the number of servers gets smaller. If
the system has no more than several hundred servers, we can expect that
the error in performance estimates is mostly from the approximate diffusion
model rather than from computation.

In this example, the algorithm is also tested with another reference den-
sity. This time we adopt a reference density given by (3.21) and (3.23) with
d = 2, c2a = 1, but c2s = 24. The decay rate of this reference density is much
slower than that of the stationary density. With ε0 = 10−7, the truncation
rectangle is now set to be K = [−7, 32]× [−7, 32], still divided into 0.5× 0.5
finite elements. As the truncation rectangle is larger, more basis functions
are used for this reference density. The algorithm output is displayed in the
column labeled “Numerical B”. Although the computation time is longer,
the performance estimates still conform with the analytical results very well.
This is in sharp contrast to the example in Section 5.1: The algorithm fails
when a “naive” reference density that has a much faster decay rate is used.
Comparing Figures 5a and 5b, we also see that with a wrong reference den-
sity, the algorithm may yield more error when a larger truncation rectangle
is used. The current numerical example, however, indicates that the algo-
rithm output is not sensitive to the reference density as long as its decay
rate is not too fast. With such a reference density, the algorithm can produce
stable output as long as the reference density is sufficiently small outside the
selected truncation rectangle.

6. Concluding remarks. In this paper, we proposed a diffusion model
for many-server queues with customer abandonment. A finite element algo-
rithm was developed for computing the stationary distribution of the model.
An essential part of the algorithm is a reference density that controls the
convergence of the algorithm. To construct the reference density, we conjec-
tured that the limit queue length process has a certain Gaussian tail. Using
this conjecture, we proposed a systematic approach to choosing a reference
density. With the proposed reference density, the output of the algorithm is
stable and accurate. Numerical examples indicate that the diffusion model
is a good approximation for many-server queues.

Some more considerations for the algorithm are as follows. Assume that
the stationary density g is twice differentiable in R

d and vanishes at infinity.
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Using the basic adjoint relationship (2.7) and applying integration by parts
twice, we have

G∗g(x) = 0 for all x ∈ R
d

where G∗ is the adjoint operator of the generator G. Fix a finite domain
K ⊂ R

d large enough. One can solve the stationary density g by the Dirichlet
problem

{

G∗g(x) = 0 for x in the interior of K,

g(x) = 0 for x on the boundary of K.

Such a Dirichlet problem can be solved via the finite difference method.
Alternatively, for each test function f , one may apply integration by parts
once to the basic adjoint relationship to obtain an equation that involves
the first order derivatives of g and the first order derivatives of f . From this
weak formulation, fixing a large enough finite domain K and assuming that
g is zero on the boundary of K, one may apply a standard Galerkin finite
element method to compute the stationary density g on K. See, e.g., [18].
Both the finite difference method and the Galerkin method do not need a
reference density. A future research topic is to compare the efficiency and
accuracy of these two algorithms with the proposed algorithm in this paper.

The dimension of the function space C grows exponentially in d, the
dimension of the diffusion model. As a consequence, both computation time
and memory usage increase exponentially in d. When d is not small, the
curse of dimensionality is a serious challenge for the proposed algorithm as
well as for any other algorithms. To reduce the dimension of C, one possible
approach is to investigate a reference density that potentially shares more
common features with the stationary density. Such a reference density may
enable us to compute the stationary density with a moderate number of
basis functions when d is not small. Another possible direction to reduce
the computational complexity of the algorithm is to investigate a low-rank
matrix approximation for the linear system (3.14). The technique of random
sampling may be explored. See [17] for more details.

APPENDIX: THE FINITE ELEMENT IMPLEMENTATION

In this appendix, we construct a sequence of function spaces {Ck : k ∈ N}
using the finite element method. Each Ck is finite-dimensional and is used to
generate the space Hk in (3.12). This finite element implementation follows
the algorithm developed in [30]. Since the state space of the SRBM in [30]
is bounded, neither a reference density nor state space truncation is used
there.
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Consider the d-dimensional diffusion processX in (2.1). As the state space
of X is unbounded, it is necessary to truncate it to apply the finite element
method. Let {Kk : k ∈ N} be a sequence of compact sets in R

d. For each
f ∈ Ck, we assume that f(x) = 0 for x ∈ R

d\Kk. For notational convenience,
the subscript k is omitted when it is fixed, so K is the compact support of
the finite-dimensional space C. In our implementation, we restrict K to be
a d-dimensional hypercube

K = [−ζ1, ξ1]× · · · × [−ζd, ξd],

where both ζj and ξj are positive constants for j = 1, . . . , d. Once the ref-
erence density is determined, we can set the truncation hypercube by the
following procedure: First, pick a small ε0 > 0; then, choose a hypercube K
such that

(A.1)

∫

Rd\K
r(x) dx < ε0.

When ε0 is small enough, the influence of the reference density outside K is
negligible in computing the stationary density.

We partition K into a finite number of subdomains. Such a partition is
called a mesh and each subdomain is called a finite element. Since K is a
hypercube, it is convenient to use a lattice mesh, where each finite element is
again a hypercube. In this case, each corner point of a finite element is called
a node. In dimension j, we divide the interval [−ζj, ξj ] into nj subintervals
by partition points

−ζj = y0j < y1j < · · · < y
nj

j = ξj .

Then, K is divided into
∏d

j=1 nj finite elements. For future reference, we
label the nodes following the way that node (i1, . . . , id) corresponds to spatial
coordinate (yi11 , . . . , y

id
d ), and define

hℓj = yℓ+1
j − yℓj for ℓ = 0, . . . , nj − 1 and j = 1, . . . , d.

If ∆ denotes such a mesh, we define

|∆| = max{hℓj : ℓ = 0, . . . , nj − 1; j = 1, . . . , d}

and

(A.2) η∆ = max

{

hℓ1j1

hℓ2j2
: ℓ1, ℓ2 = 0, . . . , nj − 1; j1, j2 = 1, . . . , d; j1 6= j2

}

.
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The space C is generated using the above mesh. We use the cubic Hermite
basis functions to construct a basis of C, as in [30]. The one-dimensional
Hermite basis functions for −1 ≤ z ≤ 1 are given by

(A.3) φ(z) = (|z| − 1)2(2 |z|+ 1) and ψ(z) = z(|z| − 1)2.

In dimension j = 1, . . . , d and for ℓ = 1, . . . , nj − 1, let

φℓj(z) =































φ

(

z − yℓj

hℓ−1
j

)

if yℓ−1
j ≤ z ≤ yℓj,

φ

(

z − yℓj

hℓj

)

if yℓj ≤ z ≤ yℓ+1
j ,

0 otherwise

and

ψℓ
j(z) =































hℓ−1
j ψ

(

z − yℓj

hℓ−1
j

)

if yℓ−1
j ≤ z ≤ yℓj,

hℓjψ

(

z − yℓj

hℓj

)

if yℓj ≤ z ≤ yℓ+1
j ,

0 otherwise.

Let x = (x1, . . . , xd)
′ be a vector in K. At node (i1, . . . , id), the basis func-

tions of C are the tensor-product Hermite basis functions

(A.4) fi1,...,id,χ1,...,χd
(x) =

d
∏

j=1

gij ,χj
(xj)

where χj is either 0 or 1 and

gij ,χj
(z) =

{

φ
ij
j (z) if χj = 0,

ψ
ij
j (z) if χj = 1.

Therefore, each node has 2d tensor-product basis functions and the space C
has a total of

(A.5) mC = 2d
d
∏

j=1

(nj − 1)

basis functions.
The space C is not a subspace of C2

b (R
d). For the one-dimensional Hermite

basis functions in (A.3), the second order derivative of φ(z) is not defined
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at z = −1 and 1, and the second order derivative of ψ(z) is not defined
at z = −1, 0, and 1. As a consequence, there exists f ∈ C for which Gf
is not defined on the boundaries of certain finite elements. Because such
boundaries have Lebesgue measure zero in R

d, for each f ∈ C, we can find
a sequence of functions {ϕi : i ∈ N} in C2

b (R
d) such that ‖Gϕi − Gf‖ → 0

as i→ ∞. Hence, Hk ⊂ H still holds for each k.
For the linear system (3.14) to have a unique solution, the family of func-

tions

{Gfi1,...,id,χ1,...,χd
: ij = 1, . . . , nj − 1;χj = 0, 1; j = 1, . . . , d}

must be linearly independent in L2(Rd, r). The following proposition pro-
vides sufficient conditions for the linear independence.

Proposition 2. Let r be a positive function on R
d that satisfies (3.1).

Let G be the operator in (2.6) such that conditions (2.2) and (2.3) hold and
all entries of Σ are continuously differentiable. Then, the family of functions

{Gfi1,...,id,χ1,...,χd
: ij = 1, . . . , nj − 1;χj = 0, 1; j = 1, . . . , d}

is linearly independent in L2(Rd, r), where fi1,...,id,χ1,...,χd
is the basis func-

tion of C given by (A.4). Consequently, the solution to the linear system
(3.14) is unique.

Proof. We use C1
0 (K) to denote the set of real-valued functions on a

neighborhood of K that are continuously differentiable and have compact
support in K. Clearly, C ⊂ C1

0 (K). For any f, f̂ ∈ C1
0 (K), we define an

inner product by

〈f, f̂〉D(K) =

d
∑

j=1

∫

K

∂f(x)

∂xj

∂f̂(x)

∂xj
dx

and let W 1,2
0 (K) be the closure of C1

0 (K) in the norm induced by this inner

product. Then, W 1,2
0 (K) is a Hilbert space and C ⊂W 1,2

0 (K).
Since G is a linear operator, it suffices to show that for any f0 ∈ C, we

must have f0 = 0 if Gf0 = 0 in L2(Rd, r). The uniform elliptic operator G
can be written into the divergence form as in (8.1) of [12], i.e.,

Gf(x) =
d

∑

j=1

b̂j(x)
∂f(x)

∂xj
+

1

2

d
∑

j=1

d
∑

ℓ=1

∂(Σjℓ(x)∂f(x)/∂xj)

∂xℓ
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for each f ∈ C2
b (R

d), where

b̂j(x) = bj(x)−
1

2

d
∑

ℓ=1

∂Σjℓ(x)

∂xℓ
.

Let U ⊂ R
d be a connected open set that is bounded and contains K. Since

r > 0 and Gf0 is continuous in the interior of each finite element, we must
have Gf0 = 0 in K except on the boundaries of certain finite elements where
Gf0 is not defined. Hence, Gf0 = 0 in U in the weak sense (see (8.2) of
[12]). Note that b, Σ, and the partial derivatives of Σ are all continuous,
so both b̂ and Σ are bounded in U . Because f0 ∈ W 1,2

0 (K), it follows from
Corollary 8.2 in [12] that f0 = 0 in K, and thus f0 = 0 in R

d.

When using the finite element algorithm to solve the stationary density
of the diffusion model (2.22), it follows from Proposition 2 that the linear
system (3.14) has a unique solution.

Now consider a sequence of function spaces {Ck : k ∈ N}. Let ∆k be the
mesh for constructing Ck. We assume that ∆k+1 is a refinement of ∆k, i.e.,
a node or an interelement boundary in ∆k is also a node or an interelement
boundary in ∆k+1. We also assume that the refinements are regular, i.e.,
sup{η∆k

: k ∈ N} < ∞ for η∆k
defined by (A.2). The next proposition,

along with Proposition 1, justifies our finite element implementation for
computing the stationary distribution.

Proposition 3. Let r be a positive function on R
d that satisfies (3.1).

Let {∆k : k ∈ N} be a sequence of lattice meshes such that each ∆k+1

is a refinement of ∆k and the refinements are regular. Let Kk be the d-
dimensional finite hypercube that is the domain of ∆k, and Ck be the function
space generated by ∆k using the tensor-product Hermite basis functions in
(A.4). Let H be the infinite-dimensional space in (3.7) and Hk be the finite-
dimensional subspace in (3.12), where the generator G satisfies (2.2) and
(3.3). Assume that

|∆k| → 0 and Kk ↑ R
d as k → ∞.

Then,
Hk → H in L(Rd, r) as k → ∞.

Proof. Given a compact set K ⊂ R
d, let C2

b (K) be the set of real-valued
functions on a neighborhood of K that are twice continuously differentiable
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with bounded first and second order derivatives in K. For each f ∈ C2
b (K),

define a norm ‖·‖H2(K) by

‖f‖2H2(K) =

∫

K

(

f2(x) + max
j=1,...,d

(∂f(x)

∂xj

)2
+ max

j,ℓ=1,...,d

( ∂2f(x)

∂xj∂xℓ

)2
)

r(x) dx.

Because both b and Σ are bounded in K, there exists κ0(K) > 0 such that

(A.6)

∫

K
(Gf(x))2r(x) dx ≤ κ0(K) ‖f‖2H2(K) for all f ∈ C2

b (K).

Let C̄2
b (K) be the closure of C2

b (K) in the above norm. A standard procedure
can be used to define the first and second order derivatives for each f ∈
C̄2
b (K). Then, the operator G can be extended to C̄2

b (K) and inequality
(A.6) holds for all f ∈ C̄2

b (K).
To prove the proposition, it suffices to prove that for any f0 ∈ C2

b (R
d),

there exists a sequence of functions {ϕk ∈ Ck : k ∈ N} such that

‖Gϕk − Gf0‖ → 0 as k → ∞.

Fix ε > 0. Because Kk ↑ R
d as k → ∞, by (3.3) and the Cauchy–Schwartz

inequality, there exists a ∈ N such that

(A.7)

∫

Rd\Ka

(Gf0(x))2r(x) dx <
ε2

2
.

Consider the finite hypercube Ka. By (A.6), there is κ0(Ka) > 0 such that

(A.8)

∫

Ka

(Gf(x))2r(x) dx ≤ κ0(Ka) ‖f‖2H2(Ka)
for all f ∈ C̄2

b (Ka).

A polynomial is used to approximate f0 on Ka. By Proposition 7.1 in the
appendix of [8], there exists a polynomial fp such that

‖fp − f0‖H2(Ka)
<

ε

2
√

2κ0(Ka)
.

For the lattice mesh ∆k, let Λa,k be the set of its nodes in the interior of
Ka. For any k ≥ a, let ϕk be a function in Ck such that ϕk(x) = 0 for all
x ∈ R

d \Ka and

ϕk(x) = fp(x) and
∂ϕk(x)

∂xj
=
∂fp(x)

∂xj
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for j = 1, . . . , d and all x ∈ Λa,k. Clearly, ϕk ∈ C̄2
b (Ka). Because the sequence

of meshes {∆k : k ∈ N} is regularly refined, there exists a constant κ1 > 0
such that η∆k

< κ1 for all k ≥ a. Using the interpolation error estimate by
Theorem 6.6 in [23], we have

‖ϕk − fp‖H2(Ka)
≤ κ21κ2κ3

(

∫

Rd

r(x) dx
)1/2

|∆k|2 ,

where κ2 > 0 is a constant independent of ∆k and fp, and

κ3 = sup

{∣

∣

∣

∣

∂4fp(x)

∂xm1

1 · · · ∂xmd

d

∣

∣

∣

∣

: x ∈ Ka; m1 + · · ·+md = 4

}

<∞.

Hence, there exists δ0 > 0 such that

‖ϕk − fp‖H2(Ka)
<

ε

2
√

2κ0(Ka)

whenever |∆k| < δ0. In this case,

‖ϕk − f0‖H2(Ka)
≤ ‖ϕk − fp‖H2(Ka)

+ ‖fp − f0‖H2(Ka)
<

ε
√

2κ0(Ka)
.

By (A.8),

(A.9)

∫

Ka

(Gϕk(x)− Gf0(x))2r(x) dx ≤ κ0(Ka) ‖ϕk − f0‖2H2(Ka)
<
ε2

2
.

It follows from (A.7) and (A.9) that as long as k ≥ a and |∆k| < δ0, we
must have ‖Gϕk − Gf0‖ < ε.
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Innovations, D. Spath and K.-P. Fähnrich, Eds. Springer–Verlag, Berlin, 17–45.

[22] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models: An Algo-
rithmic Approach. Johns Hopkins University Press, Baltimore, MD. MR618123

http://www.ams.org/mathscinet-getitem?mr=2834200
http://www.ams.org/mathscinet-getitem?mr=1097462
http://www.ams.org/mathscinet-getitem?mr=1143393
http://www.ams.org/mathscinet-getitem?mr=2724423
http://www.ams.org/mathscinet-getitem?mr=838085
http://www.ams.org/mathscinet-getitem?mr=2433709
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=629195
http://www.ams.org/mathscinet-getitem?mr=1053666
http://www.ams.org/mathscinet-getitem?mr=0184302
http://www.ams.org/mathscinet-getitem?mr=0282443
http://www.ams.org/mathscinet-getitem?mr=2558901
http://www.ams.org/mathscinet-getitem?mr=2357409
http://www.ams.org/mathscinet-getitem?mr=1621952
http://www.ams.org/mathscinet-getitem?mr=1674122
http://www.ams.org/mathscinet-getitem?mr=618123


146 J. G. DAI AND S. HE

[23] Oden, J. T. and Reddy, J. N. (1976). An Introduction to the Mathematical Theory
of Finite Elements. Wiley, New York. MR0461950

[24] Øksendal, B. (2003). Stochastic Differential Equations: An Introduction with Ap-
plications, 6th ed. Springer–Verlag, Berlin. MR2001996 (2004e:60102)

[25] Puhalskii, A. A. and Reiman, M. I. (2000). The multiclass GI/PH/N queue in
the Halfin–Whitt regime. Adv. in Appl. Probab. 32, 2, 564–595. Correction: 36, 3,
971 (2004). MR1778580

[26] Reed, J. and Tezcan, T. (2012). Hazard rate scaling of the abandonment dis-
tribution for the GI/M/n + GI queue in heavy traffic. Oper. Res. 60, 4, 981–995.
MR2979435

[27] Reed, J. E. and Ward, A. R. (2008). Approximating the GI/GI/1 + GI queue
with a nonlinear drift diffusion: Hazard rate scaling in heavy traffic. Math. Oper.
Res. 33, 3, 606–644. MR2442644

[28] Reiman, M. I. (1984). Open queueing networks in heavy traffic. Math. Oper.
Res. 9, 3, 441–458. MR757317

[29] Saure, D., Glynn, P., and Zeevi, A. (2009). A linear programming algorithm for
computing the stationary distribution of semimartingale reflected Brownian motion.
Tech. rep., Graduate School of Business, Columbia University.

[30] Shen, X., Chen, H., Dai, J. G., and Dai, W. (2002). The finite element method for
computing the stationary distribution of an SRBM in a hypercube with applications
to finite buffer queueing networks. Queueing Syst. 42, 1, 33–62. MR1943968

[31] Whitt, W. (1982). On the heavy-traffic limit theorem for GI/G/∞ queues. Adv. in
Appl. Probab. 14, 1, 171–190. MR644013

[32] Whitt, W. (2005). Heavy-traffic limits for the G/H∗
2 /n/m queue. Math. Oper.

Res. 30, 1, 1–27. MR2125135

[33] Williams, R. J. (1996). On the approximation of queueing networks in heavy traf-
fic. In Stochastic Networks: Theory and Applications, F. P. Kelly, S. Zachary, and
I. Ziedins, Eds. Oxford University Press, Oxford, UK, 35–56.

[34] Zeltyn, S. and Mandelbaum, A. (2005). Call centers with impatient customers:
Many-server asymptotics of the M/M/n+G queue. Queueing Syst. 51, 3–4, 361–402.
MR2189598

J. G. Dai
School of Operations Research

and Information Engineering
Cornell University
Ithaca, New York 14853, USA
E-mail: jim.dai@cornell.edu

Shuangchi He
Department of Industrial

and Systems Engineering
National University of Singapore
Singapore 117576
E-mail: heshuangchi@nus.edu.sg

http://www.ams.org/mathscinet-getitem?mr=0461950
http://www.ams.org/mathscinet-getitem?mr=2001996
http://www.ams.org/mathscinet-getitem?mr=1778580
http://www.ams.org/mathscinet-getitem?mr=2979435
http://www.ams.org/mathscinet-getitem?mr=2442644
http://www.ams.org/mathscinet-getitem?mr=757317
http://www.ams.org/mathscinet-getitem?mr=1943968
http://www.ams.org/mathscinet-getitem?mr=644013
http://www.ams.org/mathscinet-getitem?mr=2125135
http://www.ams.org/mathscinet-getitem?mr=2189598
mailto:jim.dai@cornell.edu
mailto:heshuangchi@nus.edu.sg

	Introduction
	A diffusion model for many-server queues
	Diffusion processes
	The GI/Ph/n+GI queue in the QED regime
	The diffusion model

	A numerical algorithm for the stationary distribution
	The generic algorithm
	Choosing a reference density
	Tail behavior of the limit queue length process
	A reference density for the piecewise OU process in (2.25)
	A reference density for the diffusion model


	Numerical examples
	Example 1: an M/H2/n+M queue
	Example 2: an M/H2/n queue
	Example 3: an M/H2/n+Ek queue
	Example 4: an M/H2/n+H2 queue

	Implementation issues
	Influence of the reference density
	Mesh selection
	Gauss–Legendre quadrature
	Computational complexity
	Modeling error vs numerical error

	Concluding remarks
	Appendix: The finite element implementation
	Acknowledgements
	References
	Author's addresses

