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Abstract. We consider a continuous-review inventory system in which the setup cost
of each order is a general function of the order quantity and the demand process is
modeled as a Brownian motion with a positive drift. Assuming the holding and shortage
cost to be a convex function of the inventory level, we obtain the optimal ordering policy
that minimizes the long-run average cost by a lower bound approach. To tackle some
technical issues in the lower bound approach under the quantity-dependent setup cost
assumption, we establish a comparison theorem that enables one to prove the global
optimality of a policy by examining a tractable subset of admissible policies. Since the
smooth pasting technique does not apply to our Brownian inventory model, we also
propose a selection procedure for computing optimal policy parameters when the setup
cost is a step function.
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1. Introduction
Classical inventory models usually assume a setup cost when an order is placed or a production run is started
to replenish the inventory. It is well known that an ordering policy of the (s , S) type is optimal for the backlog-
ging inventory problem when the setup cost is constant for any order or production quantity (see Scarf [43],
Iglehart [25], and Veinott [48]). Arising from various activities, order setup costs are more complex in practical
inventory systems and often depend on order quantities. In this paper, we take quantity-dependent setup costs
into consideration and investigate the optimal ordering policies that minimize the long-run average cost.
Setup costs may grow as order quantities increase. For example, if an order is shipped to the buyer by multiple

vehicles, a shipping fee may be charged for each of them. If a vehicle’s capacity is Q and the shipping fee is F,
the total shipping cost is a nondecreasing step function of order quantity ξ, given by

K(ξ)� F ·
⌈
ξ
Q

⌉
. (1)

The study of stochastic inventory models with such a setup cost can be traced back to Lippman [31], where the
ordering cost is assumed to be a nondecreasing, subadditive function of the order quantity. Lippman consid-
ered a periodic-review model and proved the existence of optimal ordering policies for both the finite-horizon
problem and the discounted, infinite-horizon problem. It is pointed out that at the beginning of each period,
it is optimal to replenish the inventory when it drops below a certain level and not to order when it is above
another level. The optimal ordering decisions, however, are not specified for inventory falling in other regions.
With the setup cost in (1), Iwaniec [26] identified a set of conditions under which a full-batch-ordering policy
is optimal. Alp et al. [1] allowed orders with partial batches in their policies and partially characterized the
optimal ordering policy that minimizes the long-run average cost. Chao and Zipkin [15] considered a simple
quantity-dependent setup cost:

K(ξ)� F · 1(R,∞)(ξ), (2)

where 1A denotes the indicator function of A ⊆ �. This formulation describes the administrative cost under
a supply contract with a capacity constraint: No extra cost is incurred if the order quantity does not exceed
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the contract volume R; otherwise, the buyer is required to pay an administrative fee F. The authors partially
characterized the optimal ordering policy for the periodic-review model and developed a heuristic policy.
Caliskan-Demirag et al. [14] investigated several simple forms of nondecreasing, piecewise constant setup costs,
including both (1) and (2). They also provided partial characterization for optimal ordering policies.
As opposed to the increasing fee structure, setup costs may also decrease for large orders. To achieve

economies of scale in production and distribution, suppliers in e-commerce often provide shipping discounts
or free shipping for large orders. Such promotions are useful in generating additional sales. As pointed out
by Lewis et al. [30], the shipping policies that provide incentives for large orders may bring more profits to
suppliers than standard increasing shipping fees and free shipping promotions. Zhou et al. [54] analyzed a
periodic-review inventory model with a free shipping option from a buyer’s perspective. The setup cost in their
paper is

K(ξ)� F · 1(0,R)(ξ), (3)

i.e., the supplier imposes a shipping fee F when the order quantity is less than R, but waives this charge if the
order quantity exceeds R. They found the optimal ordering policy for the single-period problem and proposed
a heuristic policy for the multiple-period model.
In practical inventory systems, order setup costs may arise from multiple activities in administration and

transportation. Expenses incurred by some activities may increase with the order quantity while other expenses
may decrease. As a result, the total setup cost of an order may not be monotone with respect to the order
quantity. The setup cost function in this paper takes a very general form, where K: �+→� is assumed to satisfy
the following conditions:
(S1) K is nonnegative with K(0)� 0;
(S2) K is bounded;
(S3) K has a right limit at zero, and if K(0+)� 0, K has a finite right derivative at zero;
(S4) K is lower semicontinuous, i.e.,

K(ξ̃) ≤ lim inf
ξ→ξ̃

K(ξ), for ξ̃ > 0.

Both the setup cost in (2) and that in (3) satisfy (S1)–(S4). In particular, condition (S2) allows us to search for
an optimal policy within a tractable subset, instead of all admissible policies; see Theorem 2. As a technical
requirement, condition (S4) ensures that the optimal average cost is attainable by a policy of the (s , S) type.
The practical interpretation of this condition is as follows: If the setup cost function has a jump at ξ̃, condition
(S4) implies that the buyer is allowed to pay the lower fee of K(ξ̃−) and K(ξ̃+), which essentially takes into
account the possibility that the buyer may adjust the order by a small quantity so as to pay a smaller setup fee.
Conditions (S1)–(S4) are similar to the assumptions in Perera et al. [36], where the optimality of (s , S) policies
is proved for economic order quantity (EOQ) models under a general cost structure.
Besides the setup cost, each order incurs a proportional cost with rate k ≥ 0. To place an order of quantity ξ > 0,

the manager is required to pay an ordering cost of

C(ξ)� K(ξ)+ kξ. (4)

We do not allow multiple simultaneous orders, i.e., the ordering cost must follow (4) as long as the total order
quantity at an ordering time is equal to ξ. In (4), it would be more appropriate to interpret K(ξ) as the non-
proportional part of the ordering cost, instead of the fixed cost in the usual sense. Accordingly, kξ represents
the proportional part, and k should be understood as the increasing rate rather than the unit price of inventory.
By decomposing the ordering cost into proportional and non-proportional parts, this formulation allows for
unbounded setup cost functions. For example, although the setup cost in (1) does not satisfy (S2), we may
decompose it into

K(ξ)� Fξ
Q

+ F
(⌈
ξ
Q

⌉
− ξ

Q

)
,

where the first and second terms are proportional and non-proportional terms, respectively. Since the non-
proportional term satisfies (S1)–(S4), we may take it as the non-proportional part of the ordering cost and
(k + F/Q)ξ as the proportional part. Thanks to the general form of the non-proportional cost, the ordering cost
function given by (4) includes most ordering cost structures in the literature, such as ordering costs with incre-
mental or all-unit quantity discounts (see Porteus [37, 38] and Altintas et al. [2]). For the sake of convenience,
we still refer to the non-proportional part of the ordering cost as the setup cost.
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Stochastic inventory models with a general setup cost function are analytically challenging. This is partly
because an ordering policy that is optimal in the sample path sense may not exist. As a result, the technique
of inventory trajectory comparison, such as that used by Perera et al. [36] for EOQ models, cannot be extended
to a stochastic inventory model in a direct manner. Moreover, since the ordering cost function may be neither
convex nor concave, it is difficult to identify the cost structures that can be preserved through dynamic pro-
gramming. As we mentioned, the optimal ordering policy for the periodic-review model has not been fully
characterized, even if the quantity-dependent setup cost function takes the simplest form as in (2) or (3). The
partial characterization also suggests that the optimal periodic review policy would be complicated.

In this paper, we assume that the inventory is constantly monitored and an order can be placed at any time.
To the best of our knowledge, this is the first attempt to explore optimal ordering policies for continuous-
review stochastic inventory systems with quantity-dependent setup costs. In the literature on periodic-review
inventory models, it is a common practice to approximate customer demand within each period by a normally
distributed random variable (see, e.g., Chapter 1 in Porteus [39] and Chapter 6 in Zipkin [55]). Brownian motion
is thus a reasonable model for demand processes in continuous-time inventory systems (see, e.g., Bather [8]
and Gallego [20]). With a Brownian demand process, the optimal ordering policy can be obtained by solving
a Brownian control problem, which turns out to be more tractable than solving a dynamic program when the
setup cost is quantity-dependent. This is because with a continuous demand process, the manager is able to
place an order at any inventory level as he wishes. Since the future demand is independent of the history
and has stationary increments, finding an optimal ordering policy is reduced to finding constant reorder and
order-up-to levels that jointly minimize the long-run average cost. In periodic-review models, by contrast, the
manager is allowed to place an order only at the beginning of a period. As the inventory level varies from
period to period, the optimal order decision at each period depends on both the current inventory level and the
prediction of the future inventory level. The resulting dynamic program is generally difficult to solve when the
setup cost function takes a general form (see Chao and Zipkin [15] and Caliskan-Demirag et al. [14] for more
discussion).1

In our model, inventory continuously incurs a holding and shortage cost that is a convex function of the
inventory level. With the aforementioned assumptions, we prove that an (s , S) policy can minimize the long-
run average cost, and that (s∗ , S∗), the optimal reorder and order-up-to levels, can be obtained by solving a
nonlinear optimization problem. When the setup cost function satisfies K(0+)� 0, we prove that s∗ � S∗ < 0 holds
under certain conditions, in which case the optimal ordering policy becomes a base stock policy that maintains
inventory above a fixed shortage level.
Brownian inventory models were first introduced by Bather [8]. In his pioneering work, Bather studied the

impulse control of Brownian motion that allows upward adjustments. Assuming a constant setup cost and
a convex holding and shortage cost, he obtained the (s , S) policy that minimizes the long-run average cost.
Bather’s results have been extended to more general settings by a number of studies under the constant setup
cost assumption. Among them, the (s , S) policy that minimizes the discounted cost was obtained by Sulem [45]
with a piecewise linear holding and shortage cost, and by Benkherouf [10] with a convex holding and shortage
cost. Bar-Ilan and Sulem [7] obtained the optimal (s , S) policy for a Brownian inventory model that allows for
constant lead times, and Muthuraman et al. [32] extended their results to a Brownian model with stochastic lead
times. Bensoussan et al. [12] and Benkherouf and Bensoussan [11] studied a stochastic inventory model where
the demand is a mixture of a Brownian motion and a compound Poisson process; the optimal policy for this
model is of the (s , S) type again. Using the fluctuation theory of Lévy processes, Yamazaki [52] generalized their
results to spectrally positive Lévy demand processes. In these papers, the optimal ordering policies are obtained
by solving a set of quasi-variational inequalities (QVIs) deduced from the Bellman equation. For computing
the optimal parameters, one needs to impose additional smoothness conditions at the reorder and order-up-to
levels. This technique, widely known as smooth pasting, is essential to solving a Brownian control problem by
the QVI approach. Smooth pasting is also used by Yamazaki [52] to obtain the optimal (s , S) policy when the
Lévy demand process is of unbounded variation; a set of weaker conditions, referred to as continuous pasting
conditions, is imposed in the same paper when the Lévy demand process is of bounded variation. See Dixit [19]
for a comprehensive account of smooth pasting and its applications.
Harrison et al. [23] studied the impulse control of Brownian motion allowing both upward and downward

adjustments, for which a control band policy is proved optimal under the discounted cost criterion. In that paper,
the authors adopted a two-step procedure which has become a widely used approach to solving Brownian
control problems: In the first step, one establishes a lower bound for the cost incurred by an arbitrary admissible
policy; such a result is often referred to as a verification theorem. In the second step, one searches for an admissible
policy to achieve this lower bound; the obtained policy, if any, must be optimal. The technique of smooth pasting
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is also a standard component of the lower bound approach. By imposing additional smoothness conditions at
the boundary of a control policy, one may obtain optimal control parameters through solving a free boundary
problem. Following this approach, Ormeci et al. [34] obtained the optimal control band policy under the long-
run average cost criterion. Both Harrison et al. [23] and Ormeci et al. [34] assumed a constant setup cost and a
piecewise linear holding and shortage cost. Their results were extended by Dai and Yao [17, 18], who allowed
for a convex holding and shortage cost and obtained optimal control band policies under both the average and
discounted cost criteria. Using the lower bound approach, Harrison and Taksar [22] and Taksar [46] studied
the two-sided instantaneous control of Brownian motion, where double barrier policies are proved optimal
under different cost criteria. Baurdoux and Yamazaki [9] extended the optimality of double barrier policies to
spectrally positive Lévy demand processes. The lower bound approach was also adopted by Wu and Chao [51],
who studied optimal production policies for a Brownian inventory system with finite production capacity, and
by Yao et al. [53], who studied optimal ordering policies with a concave ordering cost. The optimal policies in
these two papers are of the (s , S) type.
We follow the lower bound approach in this paper, while new issues arise from our Brownian model. We

establish a verification theorem in Proposition 2. It states that if there exists a continuously differentiable func-
tion f and a positive number ν such that they jointly satisfy some differential inequalities, the long-run average
cost under any admissible policy must be at least ν. We derive this lower bound using Itô’s formula, as in
the previous studies by Harrison et al. [23], Ormeci et al. [34], and Dai and Yao [17, 18]. The Brownian model
in those papers allows both upward and downward adjustments, so a control band policy is expected to be
optimal. Under such a policy, the inventory level is confined within a finite interval and the associated relative
value function is Lipschitz continuous. This fact allows them to assume f to be Lipschitz continuous in the ver-
ification theorems. With this assumption, one can prove the lower bound by relying solely on Itô’s formula. In
our model, however, only upward adjustments are allowed. The optimal policy is expected to be an (s , S) policy
whose relative value function is not Lipschitz continuous. Without the Lipschitz assumption, it is difficult to
prove the verification theorem in a direct manner. This problem was also encountered by Wu and Chao [51] and
Yao et al. [53]. In their papers, the lower bound results are established for a subset, rather than all of admissible
policies; accordingly, the proposed (s , S) policies are proved optimal within the same subset of policies.
We prove a comparison theorem to tackle this issue. Theorem 2 in this paper states that for any admissible

policy, we can always find an admissible policy that has a finite order-up-to bound and whose long-run average
cost is either less than or arbitrarily close to the average cost incurred by the given policy. In other words,
if an ordering policy can be proved optimal within the set of policies having order-up-to bounds, it must be
optimal among all admissible policies. This result allows us to prove the verification theorem by examining
an arbitrary admissible policy that is subject to a finite order-up-to bound. With an order-up-to bound, we no
longer require f to be Lipschitz continuous for establishing the verification theorem by Itô’s formula.

For an (s , S) policy, the associated relative value function and the resulting long-run average cost jointly
satisfy a second-order ordinary differential equation along with some boundary conditions; see Proposition 3
for the solution to this equation. We use this relationship to compute optimal reorder and order-up-to levels.
In the literature, the optimal (s , S) policies for Brownian models with a constant setup cost are obtained by
imposing smooth pasting conditions on the ordinary differential equations (see Bather [8], Sulem [45], Bar-Ilan
and Sulem [7], and Wu and Chao [51]). Unfortunately, our Brownian model does not preserve this property
because the general setup cost function has imposed a quantity constraint on each setup cost value. With
these constraints, the smooth pasting conditions may no longer hold at the optimal reorder and order-up-to
levels. Without definite boundary conditions, we can neither define a free boundary problem nor solve the QVI
problem for the optimal (s , S) policy. To obtain an optimal ordering policy, we need to minimize the long-run
average cost by solving a nonlinear optimization problem. When the setup cost is a step function, we develop
a policy selection algorithm for computing optimal policy parameters.
The contribution of this paper is twofold. First, by assuming a Brownian demand process, we obtain optimal

ordering policies for inventory systems with quantity-dependent setup costs, filling a long-standing research
gap. The optimality of (s , S) policies is extended to a significantly more general cost structure. Although the
optimal policy is obtained using a continuous-review model, it will shed light on periodic-review models,
presumably serving as a simple and near-optimal solution. Second, the comparison theorem and the policy
selection algorithm complement the well-established lower bound approach to solving Brownian control prob-
lems. Theorem 2 in this paper enables one to prove the optimality of a policy by examining a tractable subset,
instead of all admissible policies. The constructive proof of this theorem can be extended to similar comparison
results with minor modification. Using modified comparison theorems, we expect that both the production pol-
icy proposed by Wu and Chao [51] and the ordering policy proposed by Yao et al. [53] will be proved globally
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optimal. Besides inventory control, our approach may also be used for solving Brownian control problems aris-
ing from financial management (see, e.g., Constantinides [16] and Paulsen [35]), production systems (Wein [50],
Veatch and Wein [47], and Ata et al. [6]), and queueing control (Ata [5], Ward and Kumar [49], and Rubino and
Ata [42]).
The rest of this paper is organized as follows. We introduce the Brownian inventory model in Section 2 and

present the main results in Section 3. A lower bound is derived in Section 4 for the long-run average cost
under an arbitrary admissible policy. The relative value function and the average cost under an (s , S) policy are
analyzed in Section 5. Using these results, we prove the optimality of the proposed policy in Section 6. Section 7
is dedicated to the proof of Theorem 2, which enables us to investigate an optimal policy within a subset of
admissible policies. We introduce a policy selection algorithm in Section 8, for obtaining the optimal ordering
policy when the setup cost is a step function. The paper is concluded in Section 9, and we leave the proofs of
technical lemmas to the appendix.
Let us close this section with some frequently used notation. Let ϕ be a real-valued function defined on �.

We use ∆ϕ(t) to denote its increment at t, i.e., ∆ϕ(t)� ϕ(t+) −ϕ(t−), if the one-sided limits exist. We use ϕ′(t)
and ϕ′′(t) to denote its first and second derivatives at t, respectively.

2. Brownian Inventory Model
Consider a continuous-time inventory system whose inventory level at time t ≥ 0 is denoted by Z(t). We allow
Z(t) to be less than zero, in which case |Z(t)| is interpreted as the back order or shortage level. We assume that
all unsatisfied demands will be back-ordered and that the lead time of each order is zero. Let D(t) and Y(t) be
the cumulative demand quantity and the cumulative order quantity during [0, t], respectively. The inventory
level at time t ≥ 0 is given by

Z(t)� x −D(t)+Y(t),

where x is a real number. We refer to Z � {Z(t): t ≥ 0} as the inventory process, and put Z(0−) � x which is
interpreted as the initial inventory level. We assume that the cumulative demand process D � {D(t): t ≥ 0} is a
Brownian motion that starts from D(0) � 0 and has drift µ > 0 and variance σ2 > 0. In other words, D has the
representation

D(t)� µt − σB(t),

where B � {B(t): t ≥ 0} is a standard Brownian motion defined on a filtered probability space (Ω,F, �,�) with
filtration �� {F(t): t ≥ 0}. Then, the inventory level at time t can be written as

Z(t)� X(t)+Y(t), (5)

where
X(t)� x − µt + σB(t). (6)

We refer to X � {X(t): t ≥ 0} as the uncontrolled inventory process. The system manager replenishes the inventory
according to a non-anticipating ordering policy, which is specified by the cumulative order process Y � {Y(t):
t ≥ 0}. More specifically, an ordering policy is said to be admissible if Y satisfies the following three conditions:
(i) For each sample path ω ∈Ω, Y(ω, ·) is a nondecreasing function that is right-continuous on [0,∞) and has
left limits on (0,∞); (ii) Y(t) ≥ 0 for all t ≥ 0; (iii) Y is adapted to �, i.e., Y(t) is F(t)-measurable for all t ≥ 0.
We use U to denote the set of all admissible ordering policies, or equivalently, the set of all cumulative order
processes that satisfy the above three conditions. With the convention Y(0−)� 0, an admissible policy Y is said
to increase at time t ≥ 0 if Y(u) −Y(t−) > 0 for all u > t. We call t an ordering time if Y increases at t. Let I(t) be
the cardinality of the set {u ∈ [0, t]: Y increases at u}, which is interpreted as the number of orders placed by
time t. Moreover, t is said to be a jump time if ∆Y(t) > 0. Let

Yc(t)� Y(t) −
∑

0≤u≤t
∆Y(u). (7)

Then, Yc � {Yc(t): t ≥ 0} is the continuous part of Y.
Each order incurs an ordering cost given by (4), with k ≥ 0 and K satisfying (S1)–(S4). If K(0+) > 0, we only

need to consider the policies that place finitely many orders over a finite time interval (i.e., I(t) <∞ almost
surely for t > 0, because otherwise, either the cumulative ordering cost or the cumulative holding and shortage
cost will be infinite by time t). In other words, when K(0+) > 0, we consider Y that is a piecewise constant
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function on almost all sample paths, which implies that Yc(t) � 0 for all t > 0 almost surely. Therefore, the
cumulative ordering cost during [0, t] is given by

CY(t)�
∑

0≤u≤t
K(∆Y(u))+ kY(t). (8)

When K(0+) � 0, the manager may also exert inventory control through the continuous part of Y, which may
not be a zero process. To analyze the setup cost incurred by Yc , let us put

l � lim inf
ξ↓0

K(ξ)
ξ

. (9)

By (S3), l is the right derivative of K at zero if K(0+)� 0. We would thus interpret l as the unit setup cost when
the order quantity is infinitesimal. Besides a proportional cost of k, every unit of increment of Yc incurs a setup
cost of l. Hence, the cumulative ordering cost during [0, t] is

CY(t)�
∑

0≤u≤t
K(∆Y(u))+ kY(t)+ lYc(t). (10)

Note that l �∞ if K(0+) > 0. Following the convention that 0 · ∞ � 0, we may take (8) as a special case of the
cumulative ordering cost given by (10).
In addition to the ordering cost, the system incurs a holding and shortage cost that is charged at rate h(z)

when the inventory level is z. More specifically, h(z) is the inventory holding cost per unit of time for z ≥ 0,
and is the shortage cost of back orders per unit of time for z < 0. The cumulative holding and shortage cost by
time t is thus given by

HY(t)�
∫ t

0
h(Z(u))du , (11)

which depends on the ordering policy through the inventory process. We assume that h satisfies the following
conditions:
(H1) h(0)� 0;
(H2) h is a convex function;
(H3) h is continuously differentiable except at z � 0;
(H4) h′(z) > 0 for z > 0 and h′(z) < 0 for z < 0;
(H5) h is polynomially bounded, i.e., there exists a positive integer a and two positive numbers b0 and b1

such that h(z) ≤ b0 + b1 |z |a for all z ∈ �.
In particular, with β1, β2, β > 0, both the piecewise linear cost

h(z)�
{
β1z , if z ≥ 0
−β2z , if z < 0

and the quadratic cost h(z)� βz2 satisfy (H1)–(H5).
Given the initial inventory level x and the ordering policy Y ∈U, the long-run average cost is defined as

AC(x ,Y)� lim sup
t→∞

1
t
Ɛx[CY(t)+HY(t)],

where Ɛx[ · ] is expectation conditioning on the initial inventory level Z(0−) � x. By (10)–(11), the long-run
average cost is given by

AC(x ,Y)� lim sup
t→∞

1
t
Ɛx

[∫ t

0
h(Z(u))du +

∑
0≤u≤t

K(∆Y(u))+ kY(t)+ lYc(t)
]
. (12)

When K(0+) > 0, we only need to consider ordering policies having piecewise constant sample paths. Such a
policy can be specified by a sequence of pairs {(τ j , ξ j): j � 0, 1, . . .} where τ j is the jth ordering time and ξ j is
the quantity of the jth order. By convention, we set τ0 � 0 and let ξ0 be the quantity of the order placed at time
zero (ξ0 � 0 if no order is placed). With this sequence, the ordering policy Y can be specified by

Y(t)�
J(t)∑
j�0
ξ j ,



He, Yao, and Zhang: Optimal Inventory Policy with Quantity-Dependent Setup Costs
Mathematics of Operations Research, 2017, vol. 42, no. 4, pp. 979–1006, ©2017 INFORMS 985

where J(t)�max{ j ≥ 0: τ j ≤ t}. On the other hand, if the ordering policy Y is given, we can obtain each ordering
time by

τ j � inf{t > τ j−1: Y(t) > Y(t−)}, for j � 1, 2, . . .
and each order quantity by

ξ j � Y(τ j) −Y(τ j−), for j � 0, 1, . . . .
Therefore, finding an optimal ordering policy when K(0+) > 0 is equivalent to specifying a sequence of optimal
ordering times and order quantities {(τ j , ξ j): j � 0, 1, . . .}, which turns out to be an impulse control problem for
the Brownian model. For the ordering policy Y to be adapted to �, we require each τ j to be an �-stopping time
and ξ j to be F(τ j)-measurable.
When the setup cost has K(0+) � 0, the manager may adjust the inventory level using the continuous part

of Y without incurring infinite costs. If Yc is not a zero process, we will have I(t) �∞ for some t > 0 with a
positive probability. It may happen that the optimal ordering policy has continuous sample paths except for a
possible jump at time zero. In this case, the ordering problem becomes an instantaneous control problem for the
Brownian model.

3. Main Results
The main results of this paper are presented in this section. Theorem 1 states that with a setup cost that satisfies
(S1)–(S4) and a holding and shortage cost that satisfies (H1)–(H5), the optimal ordering policy for the Brownian
inventory model is an (s , S) policy with s ≤ S. In addition, the optimal reorder and order-up-to levels (s∗ , S∗)
satisfy s∗ < S∗ if K(0+)> 0, and satisfy s∗ ≤ S∗ if K(0+)� 0. As a special case, the optimal ordering policy becomes
a base stock policy when s∗ � S∗. We also provide a comparison result in Theorem 2, which is a technical tool
for proving the first theorem by the lower bound approach.
Under an (s , S) policy, as long as the inventory level drops below s, the manager places an order that replen-

ishes the inventory to level S immediately. We use U(s , S) to denote this policy. Clearly, U(s , S) ∈U for s ≤ S. An
(s , S) policy with s < S can be specified by the sequence of pairs {(τ j , ξ j): j � 0, 1, . . .} as follows. With τ0 � 0 and

ξ0 �

{
S− x if x ≤ s ,
0 if x > s ,

the jth order is placed at time τ j � inf{t > τ j−1: Z(t−) ≤ s} with a constant quantity ξ j � S− s.
If the reorder and order-up-to levels are equal, the (s , S) policy becomes a base stock policy. Under the base

stock policy, if the initial inventory level x is below the base stock level s, the manager places an order of
quantity s − x at time zero that replenishes the inventory to Z(0)� s; otherwise, the manager does not order at
time zero. After that, whenever the inventory level drops below s, the manager brings it back to s immediately.
Such a policy is well defined for our Brownian model, and the inventory process under that has an analytic
expression—see the lemma below.
Lemma 1. Let s be a real number and �[0,∞) the set of real-valued continuous functions on [0,∞). Then for each
φ ∈ �[0,∞), there exists a unique pair of functions (η, ζ) ∈ �[0,∞) × �[0,∞) such that (i) η is nondecreasing with
η(0)� (s −φ(0))+; (ii) ζ(t)� φ(t)+ η(t) ≥ s for t ≥ 0; (iii) η increases only when ζ(t)� s, i.e.,∫ ∞

0
(ζ(t) − s)dη(t)� 0.

Specifically,
η(t)� sup

0≤u≤t
(s −φ(u))+ , for t ≥ 0.

This lemma is a modified version of Proposition 2.1 in Harrison [21]. The proof is similar and thus omitted.
Under the base stock policy, the inventory process in our Brownian model becomes a reflected Brownian motion
with lower reflecting barrier at s. By Lemma 1, the cumulative order quantity during [0, t] is

Y(t)� sup
0≤u≤t
(s −X(u))+ ,

where X(u) is given by (6). Clearly, Y is admissible for each s ∈ �. Because Y has continuous sample paths, for
each t > 0, there are infinite ordering times in [0, t] with a positive probability.

Before stating the main theorem, let us introduce a proposition that characterizes the optimal policy of the
(s , S) type. In particular, the long-run average cost under an (s , S) policy has an analytic expression, which is
given by (13) below and will be proved in Section 5 (see Proposition 3).
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Proposition 1. Assume that the setup cost K satisfies (S1)–(S4) and that the holding and shortage cost h
satisfies (H1)–(H5). Let

γ(s , S)�


kµ+

K(S− s)µ
S− s

+
λ

S− s

∫ S

s

∫ ∞

0
h(u + y)e−λu du dy , if s < S,

(k + l)µ+ λ
∫ ∞

0
h(u + s)e−λu du , if s � S,

(13)

where λ � 2µ/σ2. Then, there exists (s∗ , S∗) ∈ �2 such that

γ(s∗ , S∗)� inf{γ(s , S): s ≤ S}. (14)

Moreover, if K(0+) > 0, the minimizer (s∗ , S∗) satisfies s∗ < z∗ < S∗, where z∗ is the unique solution to

λ

∫ ∞

0
h(u + z∗)e−λu du � h(z∗) (15)

and satisfies z∗ < 0; if K(0+)� 0, the minimizer satisfies either s∗ < z∗ < S∗ or s∗ � z∗ � S∗.

Remark 1. The long-run average cost under the (s , S) policy is given by γ(s , S) in (13). When s < S, the first
expression in (13) can be interpreted as follows. Since the quantity of each order is S − s, the long-run average
proportional and setup costs are kµ and K(S − s)µ/(S − s), respectively. The inventory process under the (s , S)
policy is regenerative. Within each cycle, the trajectory of Z is identical to that of a Brownian motion starting
from S with drift −µ and variance σ2, so a cycle length has the same distribution as the first hitting time of s
by X in (6) with X(0)� S. More specifically, assuming X(0)� x, let us put

T(y)� inf{t ≥ 0: X(t)� y} and Hx(y)� Ɛx

[∫ T(y)

0
h(X(u))du

]
. (16)

Then with X(0) � S, the length of a cycle can be represented by T(s) and the expected holding and shortage
cost during a cycle is HS(s). The long-run average holding and shortage cost is thus equal to HS(s)/ƐS[T(s)]
(see, e.g., Theorem VI.3.1 in Asmussen [3]). By Theorem 5.32 in Serfozo [44], ƐS[T(s)] � (S − s)/µ. The formula
of Hx(y) can be found in Section 15.3 in Karlin and Taylor [27], where

HS(s)�
λ
µ

∫ S

s

∫ ∞

0
h(u + y)e−λu du dy.

Hence, the third term on the right side is the long-run average holding and shortage cost. When K(0+)� 0
in (S3), by taking S− s→ 0, the long-run average cost of the (s , S) policy converges to

γ(s , s)� (k + l)µ+ λ
∫ ∞

0
h(u + s)e−λu du.

Since the (s , S) policy turns out to be a base stock policy when s � S, the second expression in (13) is the
long-run average cost under the base stock policy with base stock level s.

Remark 2. The pair (s∗ , S∗) that satisfies (14) specifies the reorder and order-up-to levels (which may not be
unique) for the optimal (s , S) policy. When K(0+) � 0, the optimal (s , S) policy may be a base stock policy
whose base stock level z∗ is specified by (15). Since z∗ < 0, the inventory under the optimal base stock policy is
maintained above a fixed shortage level. Regulated by the (slightly) negative base stock level, the inventory will
fluctuate in a neighborhood of zero. The optimal base stock level is strictly below zero, because the Brownian
demand process may result in negative demands in some durations. In practice, such a demand model makes
more sense when customers are allowed to return their items to the inventory system (see Asmussen and
Perry [4]). Otherwise, maintaining a zero or slightly positive base stock level could be more reasonable. The
Brownian assumption about the demand process is made mainly for the sake of tractability. If negative demands
are not allowed, the Brownian model may well reflect reality when the average demand is relatively high and
the variance of demand is relatively low (see Wu and Chao [51]).
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Remark 3. If the optimal (s , S) policy is a base stock policy, by (13) and (15), the minimum long-run average
cost is equal to

γ(z∗ , z∗)� (k + l)µ+ h(z∗).

The optimal base stock level can be interpreted as follows. As discussed in Section 2, the long-run average
ordering cost must be (k + l)µ under any base stock policy. The optimal base stock policy should thus minimize
the average holding and shortage cost. As a reflected Brownian motion with a negative drift, Z will reach a
steady state as time goes by. Let Z(∞) be the steady-state inventory level. If the base stock level is s, Z(∞) − s
follows an exponential distribution with rate λ� 2µ/σ2 (see, e.g., Proposition 6.6 in Harrison [21]). The resulting
long-run average holding and shortage cost is given by

H(s)�
∫ ∞

0
h(u + s) · λe−λu du.

By setting the first derivative of H equal to zero, the optimal base stock level can be obtained by solving (15),
from which we also have H(z∗)� h(z∗). Therefore, (k + l)µ+ h(z∗) is the long-run average cost under the optimal
base stock policy.

Remark 4. Although the optimal base stock policy incurs less holding and shortage cost than any (s , S) policy
with s < S, there may exist some s < S such that the (s , S) policy with these parameters incurs less setup cost,
i.e., K(S− s)/(S− s)< l. When K(0+)� 0, the optimal reorder and order-up-to levels may either satisfy s∗ < z∗ < S∗

or satisfy s∗ � z∗ � S∗.

Let
ν∗ � inf{AC(x ,Y): x ∈ �, Y ∈U},

where AC(x ,Y) is the long-run average cost given by (12). Theorem 1 states the optimality of (s , S) policies
among all admissible policies. Under the average cost criterion, neither the optimal ordering policy nor the
minimum long-run average cost depends on the initial inventory level.

Theorem 1. Assume that the setup cost K satisfies (S1)–(S4) and that the holding and shortage cost h satisfies (H1)–(H5).
Then, with (s∗ , S∗) determined by (14), U(s∗ , S∗) is an optimal ordering policy that minimizes the long-run average cost,
i.e., ν∗ � γ(s∗ , S∗) with γ given by (13).

The second theorem is a critical result for proving Theorem 1 by the lower bound approach, playing an
important role in establishing the verification theorem (see Proposition 2 in Section 4). It implies that an ordering
policy that is optimal within the set of policies having order-up-to bounds must be optimal in all admissible
policies. Since policies subject to order-up-to bounds are analytically tractable, it is more convenient to prove
the optimality within these policies.
For m � 1, 2, . . ., let

Um � {Y ∈U: Z(t) ≤ m for all ordering time t almost surely},

which is the set of admissible policies with an order-up-to bound at m. Clearly, U(s , S) ∈Um if s ≤ S ≤m. Because
of the Brownian demand process, it is possible that Z(t) > m under a policy in Um if t is not an ordering time.

Theorem 2. Assume that the setup cost K satisfies (S1)–(S3) and that the holding and shortage cost h is nondecreasing
on [0,∞). Then, for any admissible policy Y, there exists a sequence of admissible policies {Ym ∈Um : m � 1, 2, . . .} such
that

lim
m→∞

AC(x ,Ym) ≤AC(x ,Y). (17)

Let Ū be the set of admissible policies subject to order-up-to bounds, i.e., Ū �
⋃∞

m�1 Um . Theorem 2 implies
that a policy that is optimal in Ū must be optimal in U. We will prove this theorem in Section 7.

4. A Lower Bound for Long-Run Average Costs
In this section, we establish a lower bound for the long-run average cost under an arbitrary admissible policy.
This lower bound is specified by differential inequalities with respect to a relative value function. In the lower
bound approach, such a result is referred to as a verification theorem.
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Proposition 2. Assume that K satisfies (S1)–(S3) and that h satisfies (H1)–(H5). Let f : �→ � be a continuously
differentiable function with f ′ absolutely continuous. Assume that

f (z1) − f (z2) ≥ −K(z1 − z2) − k(z1 − z2), for z1 > z2 , (18)

and that there exists a positive integer d and two positive numbers a0 and a1 such that

| f ′(z)| < a0 , for z < 0 (19)

and
| f ′(z)| < a0 + a1zd , for z ≥ 0. (20)

Let Γ be the generator of X in (6), i.e.,
Γ f (z)� 1

2σ
2 f ′′(z) − µ f ′(z).

Assume that there exists a positive number ν that satisfies

Γ f (z)+ h(z) ≥ ν for z ∈ � such that f ′′(z) exists. (21)

Then, AC(x ,Y) ≥ ν, for x ∈ � and Y ∈U, where AC(x ,Y) is given by (12).

If we can find an ordering policy whose relative value function satisfies all the assumptions on f and whose
long-run average cost ν satisfies (21), then by Proposition 2, this policy must be optimal in all admissible policies.
To prove Proposition 2, we need two technical lemmas about inventory processes subject to an order-up-to
bound.
For a given positive integer m, let

Ym(t)� sup
0≤u≤t
(m −X(u))+ and Zm(t)� X(t)+Ym(t). (22)

By Lemma 1, Ym � {Ym(t): t ≥ 0} is the base stock policy with base stock level m, under which Zm � {Zm(t): t ≥ 0}
is a reflected Brownian motion starting from Zm(0) � x ∨m with lower reflecting barrier at m. The next lemma
states that Zm dominates all inventory processes that have an order-up-to bound at m.

Lemma 2. For a positive integer m, let Z be the inventory process given by (5) with Y ∈Um and Zm the inventory process
given by (22) with X defined by (6). Then, Z(t) ≤ Zm(t) on each sample path for all t ≥ 0.

The marginal distribution of Zm can be specified as follows. Let

ψm
x (v , t)� �[Zm(t) > v | X(0)� x], for t ≥ 0 and v ≥ 0.

Then by (3.63) in Harrison [21], ψm
x (v , t)� 1 for 0 ≤ v < m and

ψm
x (v , t)�Φ

(−v + (x ∨m) − µt
σt1/2

)
+ e−λ(v−m)Φ

(−v − (x ∨m)+ µt
σt1/2

)
, for v ≥ m , (23)

where Φ is the standard normal cumulative distribution function. Because Zm dominates all inventory processes
that have an order-up-to bound at m, we may use its marginal distribution to establish boundedness results for
policies in Ū.

Lemma 3. Let f : �→� be a differentiable function and Z the inventory process given by (5) with Y ∈ Ū. Assume that
there exists a positive integer d and two positive numbers a0 and a1 such that

| f ′(z)| < a0 + a1 |z |d , for z ∈ �. (24)

Then,
Ɛx[| f (Z(t))|] <∞, for t ≥ 0, (25)

and
Ɛx

[∫ t

0
f ′(Z(u))2 du

]
<∞, for t ≥ 0. (26)

Moreover,
lim
t→∞

1
t
Ɛx[| f (Z(t)) · 1[0,∞)(Z(t))|]� 0. (27)
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The proof of Proposition 2 relies on Theorem 2 and Lemma 3, which allow us to establish a lower bound for
long-run average costs by examining policies in Ū, rather than all admissible policies.

Proof of Proposition 2. By Theorem 2, it suffices to consider an arbitrary policy Y ∈ Ū, in which case (25)–(27)
hold. By (5), (7), and Itô’s formula (see, e.g., Lemma 3.1 in Dai and Yao [17]),

f (Z(t))� f (x)+
∫ t

0
Γ f (Z(u))du + σ

∫ t

0
f ′(Z(u))dB(u)+

∫ t

0
f ′(Z(u))dYc(u)+

∑
0≤u≤t

∆ f (Z(u)),

for t ≥ 0. Then by (21),

f (Z(t)) ≥ f (x)+ νt −
∫ t

0
h(Z(u))du + σ

∫ t

0
f ′(Z(u))dB(u)

+

∫ t

0
f ′(Z(u))dYc(u)+

∑
0≤u≤t

∆ f (Z(u)). (28)

By (9) and (18), f ′(z) ≥ −(k + l) for z ∈ �, where l �∞ if K(0+) > 0. Then by (18) and (28),

f (Z(t)) ≥ f (x)+ νt −
∫ t

0
h(Z(u))du + σ

∫ t

0
f ′(Z(u))dB(u)

− (k + l)Yc(t) −
∑

0≤u≤t
(K(∆Z(u))+ k∆Z(u)).

Since ∆Z(t)�∆Y(t) and Y(t)�∑
0≤u≤t ∆Y(u)+Yc(t), the above inequality can be written as

f (Z(t))+
∫ t

0
h(Z(u))du +

∑
0≤u≤t

K(∆Y(u))+ kY(t)+ lYc(t) ≥ f (x)+ νt + σ
∫ t

0
f ′(Z(u))dB(u). (29)

By (26) and Theorem 3.2.1 in Øksendal [33],

Ɛx

[∫ t

0
f ′(Z(u))dB(u)

]
� 0.

Since (25) holds, we can take expectation on both sides of (29), which yields

Ɛx[ f (Z(t))]+ Ɛx

[∫ t

0
h(Z(u))du +

∑
0≤u≤t

K(∆Y(u))+ kY(t)+ lYc(t)
]
≥ f (x)+ νt .

Dividing both sides by t and letting t go to infinity, we have

lim inf
t→∞

1
t
Ɛx[ f (Z(t))]+ lim inf

t→∞

1
t
Ɛx

[∫ t

0
h(Z(u))du +

∑
0≤u≤t

K(∆Y(u))+ kY(t)+ lYc(t)
]
≥ ν.

Then, it follows from (12) that
lim inf

t→∞

1
t
Ɛx[ f (Z(t))]+AC(x ,Y) ≥ ν. (30)

By (30), AC(x ,Y) ≥ ν holds when
lim inf

t→∞

1
t
Ɛx[ f (Z(t))] ≤ 0. (31)

Otherwise, there exists c > 0 such that
lim inf

t→∞

1
t
Ɛx[ f (Z(t))] > c. (32)

We next show that AC(x ,Y)�∞ if Inequality (32) holds. Hence, AC(x ,Y) ≥ ν must be true.
It follows from (27) and (32) that

lim inf
t→∞

1
t
Ɛx[ f (Z(t)) · 1(−∞, 0)(Z(t))] > c ,

and thus
Ɛx[ f (Z(t)) · 1(−∞, 0)(Z(t))] >

ct
2 ,
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for t sufficiently large. By (19), there exists some c0 > 0 such that | f (z)| ≤ a0 |z |+ c0 for z < 0. Then, we must have

Ɛx[|Z(t)|] >
ct − 2c0

2a0
, (33)

for t sufficiently large. Since h is convex with h′(z) > 0 for z > 0 and h′(z) < 0 for z < 0, we can find c1 , c2 > 0
such that h(z) ≥ c1 |z | − c2 for all z ∈ �. Therefore,

lim sup
t→∞

1
t
Ɛx

[∫ t

0
h(Z(u))du

]
≥ lim sup

t→∞

c1

t
Ɛx

[∫ t

0
|Z(u)|du

]
− c2 ,

where, by (33), the right side must be infinite. Hence, we must have AC(x ,Y)�∞. �

Remark 5. The boundedness conditions (26) and (27) are essential to proving Proposition 2 by Itô’s formula.
More specifically, condition (26) ensures that (30) holds, condition (27) ensures that (31) holds as long as the long-
run average cost is finite, and the lower bound result follows from these two inequalities. Since conditions (26)
and (27) do not hold for all admissible policies, Theorem 2 is the critical tool for establishing a lower bound for
all of them. In the Brownian model studied by Harrison et al. [23], Ormeci et al. [34], and Dai and Yao [17, 18],
inventory is allowed to be adjusted both upwards and downwards. The optimal policy in that setting is a control
band policy under which the inventory level is confined within a finite interval. Because the relative value
function under a control band policy is Lipschitz continuous, these authors imposed a Lipschitz assumption
on f in their verification theorems. This assumption ensures that condition (26) holds for all admissible policies
(which yields (30)) and that condition (31) holds when the long-run average cost is finite, so one can obtain a
lower bound for all admissible policies immediately. In our Brownian model, however, only upward adjustments
are allowed and the optimal policy is an (s , S) policy whose relative value function is not Lipschitz continuous
(see Remark 8 in Section 6). Without the Lipschitz assumption, conditions (26) and (31) may no longer hold for
a general admissible policy, even if we assume the associated long-run average cost to be finite. In this case, Wu
and Chao [51] and Yao et al. [53] restricted their scope to the subset of policies that satisfy (26) and (31). Their
lower bounds are established within this subset, and consequently, their proposed policies are proved optimal
within the same subset. Theorem 2 in the present paper enables us to establish a lower bound for all admissible
policies. We can thus prove the proposed policy to be globally optimal.

5. Relative Value Function and Long-Run Average Cost
In order to prove the proposed policy to be optimal, let us first analyze the long-run average cost under an
arbitrary (s , S) policy. An important notion for the analysis is the relative value function under the (s , S) policy.
The relative value function and the associated long-run average cost jointly satisfy an ordinary differential
equation with some boundary conditions.

Proposition 3. Assume that h satisfies (H1)–(H5). For any pair of real numbers (s , S) with s ≤ S, let (ν,V) be a solution
to the following ordinary differential equation

ΓV(z)+ h(z)� ν, for z ∈ � (34)

with boundary conditions {
V(S) −V(s)�−K(S− s) − k(S− s), if s < S,
V′(s)�−(k + l), if s � S,

(35)

and
lim
z→∞

e−αzV′(z)� 0, for α > 0. (36)

Then, ν is uniquely given by ν � γ(s , S) and V is given by

V(z)�−(z − s)ν
µ

+
λ
µ

∫ z

s

∫ ∞

0
h(u + y)e−λu du dy , (37)

which is unique up to addition by a constant. Furthermore, V is twice continuously differentiable. Assume that K satisfies
(S3) if s � S. Then, AC(x ,U(s , S))� γ(s , S), i.e., γ(s , S) is the long-run average cost under the (s , S) policy.
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Remark 6. For z ≥ s, V(z) can be interpreted as the cost disadvantage of inventory level z relative to the reorder
level s. Under the (s , S) policy, T(s) defined by (16) can be interpreted as the first ordering time, given that
Z(0−) � z, and Hz(s) is the expected holding and shortage cost during [0,T(s)]. Following the arguments in
Remark 1, we have

Ɛz[T(s)]�
z − s
µ

and Hz(s)�
λ
µ

∫ z

s

∫ ∞

0
h(u + y)e−λu du dy.

By (37), V(z) can be decomposed into
V(z)� Hz(s) − ν · Ɛz[T(s)].

In this equation, Hz(s) is the cost disadvantage of a system starting from time zero with initial level Z(0−) � z
compared with a system starting from time T(s) with initial level Z(T(s)−) � s, while ν · Ɛz[T(s)] represents
the cost disadvantage of a system starting from time zero compared with the delayed system starting from
time T(s). As the difference between these two costs, V(z) represents the relative cost disadvantage of inventory
level z compared with the reorder level s.

Proof of Proposition 3. We obtain the explicit solution (ν,V) to the boundary value problem (34)–(36) as follows.
If such a solution exists, write g(z)� V′(z) for z ∈�. By (34) and (36), g satisfies the following linear first-order
ordinary differential equation,

g′(z) − λg(z)�−λh(z)
µ

+
λν
µ

with boundary condition
lim
z→∞

e−αz g(z)� 0, for α > 0.

Since h is polynomially bounded, for each ν ∈ �, the above equation has a unique solution

g(z)�− ν
µ
+
λ
µ

∫ ∞

0
h(y + z)e−λy dy ,

which yields (37). By the boundary condition (35), we obtain ν � γ(s , S). Note that

V′′(z)� λ
µ

(
λ

∫ ∞

0
h(y + z)e−λy dy − h(z)

)
, for z ∈ �.

By (H2), h is a continuous function, so V is twice continuously differentiable.
It remains to show AC(x ,U(s , S))� γ(s , S). By (5), (7), (34), and Itô’s formula,

V(Z(t)) � V(Z(0))+ νt −
∫ t

0
h(Z(u))du + σ

∫ t

0
g(Z(u))dB(u)

+

∫ t

0
g(Z(u))dYc(u)+

∑
0<u≤t

∆V(Z(u)). (38)

Under the (s , S) policy with s < S, it follows from (35) that ∆V(Z(u))�−K(S− s) − k(S− s) whenever ∆Z(u) > 0
and u > 0. Since Yc(t)� 0 for t ≥ 0, Equation (38) turns out to be

V(Z(t))� V(Z(0))+ νt −
∫ t

0
h(Z(u))du + σ

∫ t

0
g(Z(u))dB(u) −K(S− s)J̃(t) − k(Y(t) −Y(0)),

where J̃(t) is the cardinality of {u ∈ (0, t]: ∆Y(u) > 0}. By (26),

Ɛx[V(Z(t))]� Ɛx[V(Z(0))+ kY(0)]+ νt − Ɛx

[∫ t

0
h(Z(u))du +K(S− s)J̃(t)+ kY(t)

]
. (39)

When s � S, by Lemma 1, both Y and Z have continuous sample paths. By (35) and (38),

V(Z(t))� V(Z(0))+ νt −
∫ t

0
h(Z(u))du + σ

∫ t

0
g(Z(u))dB(u) − (k + l)Yc(t).
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Since Yc(t)� Y(t) −Y(0), taking expectation on both sides, we obtain

Ɛx[V(Z(t))]� Ɛx[V(Z(0))+ kY(0)]+ νt − Ɛx

[∫ t

0
h(Z(u))du + kY(t)+ lYc(t)

]
. (40)

Under the (s , S) policy with s ≤ S, Y(0) ≤ |S− x | and x ∧ S ≤ Z(0) ≤ x ∨ S. It follows that

lim
t→∞

1
t
Ɛx[V(Z(0))+ kY(0)]� 0.

Because |V(Z(t))| ≤ |V(Z(t)) · 1[0,∞)(Z(t))| +max{|V(z)|: (s ∧ 0) ≤ z ≤ 0}, we obtain

lim
t→∞

1
t
Ɛx[V(Z(t))]� 0

by (27). Then, it follows from (12) and (39)–(40) that AC(x ,U(s , S))� γ(s , S). �
Remark 7. When the setup cost is constant for any order quantity, the optimal reorder and order-up-to levels
can be obtained by adding a smooth pasting condition

V′(s∗)� V′(S∗)�−k , (41)

where, with slight abuse of notation, V should be understood as the relative value function under U(s∗ , S∗) (see
Bather [8], Taksar [46], and Sulem [45] for the interpretation of the smooth pasting condition). This condition,
together with (34)–(36), defines a free boundary problem by which (s∗ , S∗) can be uniquely determined. In our
Brownian model, however, the general setup cost function has imposed a quantity constraint on each setup cost
value. With these constraints, the smoothness condition (41) may no longer hold at the free boundary. In other
words, the smooth pasting method cannot be used for our problem.

6. Optimal Ordering Policy
The optimality result is proved in this section. We first confine ordering policies to the (s , S) type, proving the
existence of the optimal (s , S) policy. Then, we show that the relative value function associated with the optimal
(s , S) policy and the resulting long-run average cost jointly satisfy the conditions specified in the verification
theorem, thus proving Theorem 1 by the lower bound approach.
We establish a series of lemmas to prove Proposition 1 and Theorem 1. In particular, the following function

g0: �→�+, defined by

g0(z)�
λ
µ

∫ ∞

0
h(y + z)e−λy dy , (42)

is frequently used in the analysis. The first derivative of g0 is

g′0(z)�
λ
µ

(
λ

∫ ∞

0
h(y + z)e−λy dy − h(z)

)
, (43)

and g0 is a solution to the linear first-order ordinary differential equation

1
2σ

2 g′0(z) − µg0(z)+ h(z)� 0. (44)

Using the derivative, we specify the monotone intervals of g0 in the following lemma.

Lemma 4. Assume that h satisfies (H1)–(H5). Then,

lim
z→±∞

g0(z)�∞ (45)

and 
g′0(z) < 0, if z < z∗ ,
g′0(z)� 0, if z � z∗ ,
g′0(z) > 0, if z > z∗ ,

(46)

where z∗ is uniquely determined by (15) and is less than zero.
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Remark 8. The relative value function V given by (37) satisfies V′(z)�−ν/µ+ g0(z), so by (45), V′ is unbounded.
This implies that the relative value function for an (s , S) policy is not Lipschitz continuous.

If each order quantity is fixed at ξ > 0, the optimal reorder and order-up-to levels will be determined by min-
imizing the holding and shortage cost. We use s̃(ξ) to denote the optimal reorder level, and the corresponding
order-up-to level is S̃(ξ) � s̃(ξ)+ ξ. If a base stock policy is used, we use s̃(0) to denote the optimal base stock
level, in which case S̃(0)� s̃(0). For ξ ≥ 0, s̃(ξ) is specified in Lemmas 5–6.
Lemma 5. Assume that h satisfies (H1)–(H5). Then for each ξ > 0, there exists a unique (s̃(ξ), S̃(ξ)) ∈ �2 such that

g0(s̃(ξ))� g0(S̃(ξ)) and S̃(ξ)� s̃(ξ)+ ξ. (47)

This solution satisfies

s̃(ξ) < z∗ < S̃(ξ), for ξ > 0, (48)
lim
ξ→∞

s̃(ξ)�−∞ and lim
ξ→∞

S̃(ξ)�∞. (49)

Both s̃ and S̃ are differentiable on (0,∞), with

s̃′(ξ) < 0 and S̃′(ξ) > 0, for ξ > 0. (50)

Moreover,

lim
ξ→∞

1
ξ

∫ S̃(ξ)

s̃(ξ)
g0(y)dy �∞. (51)

The value of s̃(ξ) is determined by (47) for ξ > 0. Taking s̃(0) � z∗, we extend the domain of s̃ to [0,∞). For
notational convenience, let us write

γ̃(s , ξ)� γ(s , s + ξ), for s ∈ � and ξ ≥ 0, (52)

which is the long-run average cost with the reorder level fixed at s and the order-up-to level fixed at s + ξ.
By (13) and (42),

γ̃(s , ξ)�


kµ+

K(ξ)µ
ξ

+
µ

ξ

∫ s+ξ

s
g0(y)dy , if ξ > 0,

(k + l)µ+ µg0(s), if ξ � 0.
(53)

For ξ ≥ 0, let
θ(ξ)� inf{γ̃(s , ξ): s ∈ �}, (54)

which is the minimum long-run average cost when the quantity of each order is fixed at ξ (a base stock policy
is used if ξ � 0). The next lemma says that this minimum cost can be attained by setting the reorder level at s̃(ξ).
In addition, θ is lower semicontinuous.
Lemma 6. Assume that K satisfies (S1), (S3), and (S4), and that h satisfies (H1)–(H5). Then,

θ(ξ)� γ̃(s̃(ξ), ξ), for ξ ≥ 0, (55)

where s̃(0)� z∗ and s̃(ξ) is determined by (47) for ξ > 0. Moreover, θ is lower semicontinuous on [0,∞) and satisfies

lim
ξ→∞

θ(ξ)�∞. (56)

Proof of Proposition 1. By (52) and (54),

inf{γ(s , S): s ≤ S} � inf{θ(ξ): ξ ≥ 0}.

To prove (14), we need to show that there exists ξ∗ ≥ 0 such that θ(ξ∗)� inf{θ(ξ): ξ ≥ 0}.
By (56), if ξ∗ exists, there must be some M < ∞ such that ξ∗ ≤ M. Because θ is lower semicontinuous on
[0,∞), by the extreme value theorem (see, e.g., Theorem B.2 in Puterman [41]), there exists ξ̂ ∈ [0,M] such that
θ(ξ̂) ≤ θ(ξ) for all ξ ∈ [0,M]. Hence, ξ∗ � ξ̂ must be a minimizer of θ. Taking s∗ � s̃(ξ∗) and S∗ � S̃(ξ∗), we deduce
that (14) holds.
Lemma 4 provides the properties of z∗. If K(0+) > 0, we obtain θ(0)� γ̃(z∗ , 0)�∞ because l �∞. This implies

that ξ∗ > 0, and by (48), we obtain s∗ < z∗ < S∗. If K(0+)� 0, it may happen that ξ∗ � 0, in which case s∗ � z∗ � S∗
since s̃(0)� z∗. If K(0+)� 0 and ξ∗ > 0, we have s∗ < z∗ < S∗ again by (48). �
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It remains to prove the global optimality of U(s∗ , S∗) using the verification theorem. Under this policy, the
relative value function in (37) turns out to be

V̂(z)�−
γ(s∗ , S∗)

µ
(z − s∗)+

∫ z

s∗
g0(y)dy , for z ∈ �,

which, along with the long-run average cost γ(s∗ , S∗), satisfies all conditions specified in Proposition 2 except
for (19). The relative value function should thus be modified to fulfill this condition. We propose to use the
following modified relative value function

V ∗(z)�−
γ(s∗ , S∗)

µ
(z − s)+

∫ z

s
g0(y ∨ s)dy , for z ∈ �, (57)

where s < 0 is a truncation point to be selected. Although the relative value function becomes Lipschitz contin-
uous on (−∞, 0) by the modification, we should also ensure that this will not affect other conditions specified
in Proposition 2. To this end, we establish the following lemma.

Lemma 7. Assume that K satisfies (S1) and that h satisfies (H1)–(H5). Then, there exists s ∈ (−∞, z∗) such that

γ̄(s , ξ) ≥ γ(s∗ , S∗), for s ∈ � and ξ > 0, (58)

where
γ̄(s , ξ)� kµ+

K(ξ)µ
ξ

+
µ

ξ

∫ s+ξ

s
g0(y ∨ s)dy. (59)

Since g0 is nonincreasing on (−∞, z∗), the truncation point s ∈ (−∞, z∗) that satisfies (58)–(59) is not unique.
With the previous lemma, we are ready to present the proof of Theorem 1.

Proof of Theorem 1. Let us show that (γ(s∗ , S∗),V ∗) satisfies all conditions specified in Proposition 2, so U(s∗ , S∗)
is an optimal ordering policy. By (57), the first derivative of V ∗ is

V ∗′(z)�−
γ(s∗ , S∗)

µ
+ g0(z ∨ s), for z ∈ �,

so V ∗ is continuously differentiable on � and twice differentiable except at s. By (57) and (59),

γ̄(s , ξ)�
µ

ξ
(kξ +K(ξ)+V ∗(s + ξ) −V ∗(s))+ γ(s∗ , S∗), for s ∈ � and ξ > 0.

Then by (58),
V ∗(s + ξ) −V ∗(s) ≥ −K(ξ) − kξ,

which implies that V ∗ satisfies (18). By (46), g0(z∗) ≤ g0(z∨ s) ≤ (g0( s)∨ g0(0)) for z < 0, from which condition (19)
follows. Condition (20) holds because h is polynomially bounded. For z > s, it follows from (44) and (57) that

ΓV ∗(z)+ h(z)� 1
2σ

2 g′0(z) − µg0(z)+ h(z)+ γ(s∗ , S∗)� γ(s∗ , S∗).

For z < s, g′0(z ∨ s)� 0. Since s < z∗, it follows from (46) that g′0(z) < 0 and g0(z) > g0( s). Then,

ΓV ∗(z)+ h(z)�−µg0( s)+ h(z)+ γ(s∗ , S∗) > 1
2σ

2 g′0(z) − µg0(z)+ h(z)+ γ(s∗ , S∗)� γ(s∗ , S∗).

Hence, (γ(s∗ , S∗),V ∗) satisfies condition (21). �

7. Policies Subject to Order-Up-to Bounds
This section is devoted to the proof of Theorem 2. Let Y be an admissible policy. We first modify this policy to
construct a policy Ym ∈Um , where m is a fixed positive integer. Then, we prove that {Ym ∈Um : m � 1, 2, . . .} has
a subsequence that satisfies (17).
For each Y, we would construct a policy Ym ∈ Um that incurs less holding and shortage cost and less pro-

portional cost. As m goes large, the average setup cost under Ym should be asymptotically dominated by that
under Y. Although by imposing an order-up-to bound, we can easily construct a policy that maintains a lower
inventory level, we must make additional adjustments to ensure that the shortage level under Ym will not be
higher. Such a policy is constructed as follows.
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Let Yc
m be the continuous part of Ym . Under Ym , the inventory level at time t is

Zm(t)� X(t)+Ym(t), (60)

where X(t) is given by (6) and
Ym(t)� Yc

m(t)+
∑

0≤u≤t
∆Ym(u).

The continuous part of Ym is constructed by

Yc
m(t)�

∫ t

0
1(−∞,m](Zm(u−))dYc(u), (61)

where Yc is the continuous part of Y. On each sample path, Ym may have a jump either at a jump time of Y or
at a hitting time of zero by Zm . Let Jm � {t ≥ 0: ∆Ym(t) > 0} be the set of jump times of Ym , J � {t ≥ 0: ∆Y(t) > 0}
the set of jump times of Y, and Im � {t ≥ 0: Zm(t−)� 0} the set of hitting times of zero by Zm . Then, Jm ⊆ J ∪ Im .
The size of each jump of Ym is specified as follows:
(J1) ∆Ym(t)� 0 for t ∈ J, if Zm(t−) > m/2;
(J2) ∆Ym(t)�∆Y(t) for t ∈ J, if Zm(t−) ≤ m/2 and Zm(t−)+∆Y(t) ≤ m;
(J3) ∆Ym(t)� m −Zm(t−) for t ∈ J, if Zm(t−) ≤ m/2 and Zm(t−)+∆Y(t) > m;
(J4) ∆Ym(t)� (Z(t) ∧m)+ for t ∈ Im\J, where Z is the inventory process under policy Y.
In other words, Ym does not make jumps when the inventory level is above m/2. If the inventory level is

below m/2, Ym has simultaneous jumps with Y. Each simultaneous jump takes the corresponding jump size
of Y, as long as the inventory level will not exceed m after that jump; otherwise, the simultaneous jump will
replenish the inventory level to m. In addition, Ym may have jumps when the inventory level reaches zero. In
this case, it will replenish the inventory level to Z(t) ∧m, if the inventory level of the system under policy Y
satisfies Z(t) > 0; otherwise, Ym does not make a jump.

The above policy construction procedure is illustrated in Figure 1. We plot a sample path of the inventory
process under policy Y and the corresponding sample path under policy Ym . We use the thin solid curve for
the inventory process under Y, the dashed curve for that under Ym , and the thick solid curve for their identical
parts. The type of each jump is indicated beside the jump point. In addition to these jumps, we assume that Yc

increases over time intervals (C1) and (C2). As Zm is below m over (C1), Yc and Yc
m have the same increments

during the time; however, Yc
m does not increase over (C2) while Zm is above m.

The following lemma states that compared with policy Y, the modified policy Ym maintains a lower inventory
level and the same shortage level.

Figure 1. A sample path of the inventory process under policy Y and the corresponding sample path under the modified
policy Ym , with Z given by (5) and Zm given by (60). We use the thin solid curve for the inventory process under Y, the
dashed curve for that under Ym , and the thick solid curve for their identical parts

(J2)

(J3)

(J2)

(C2)

m

m/2

(C1)

(J4)

(J1)

(J4)

(J3)

0



He, Yao, and Zhang: Optimal Inventory Policy with Quantity-Dependent Setup Costs
996 Mathematics of Operations Research, 2017, vol. 42, no. 4, pp. 979–1006, ©2017 INFORMS

Lemma 8. Let Y be an admissible policy. For a fixed positive integer m, let Ym be the policy constructed according to (61)
and (J1)–(J4). Then, Zm(t) ≤ Z(t) for all t ≥ 0 on each sample path, where Z is the inventory process under policy Y. In
particular, Zm(t)� Z(t) when Zm(t) < 0.

Lemma 8 implies that the modified policy Ym incurs less holding and shortage cost and less proportional cost
than policy Y. To prove the comparison theorem, we should also establish asymptotic dominance between the
average setup costs incurred by these two policies.

Proof of Theorem 2. Because h is nondecreasing on [0,∞), it follows from Lemma 8 that∫ t

0
h(Zm(u))du ≤

∫ t

0
h(Z(u))du , for t ≥ 0,

i.e., Ym incurs less holding and shortage cost than Y. Since Zm(t) ≤ Z(t), we have Ym(t) ≤ Y(t), so Ym incurs less
proportional cost, too. By (61), Yc

m(t) ≤ Yc(t) for all t ≥ 0. Then, if K(0+) � 0, we obtain lYc
m(t) ≤ lYc(t), i.e., Yc

m
incurs less setup cost than Yc . If K(0+) > 0 and there exists some t > 0 for which Yc(t) > 0, the cumulative setup
cost incurred by Yc must be infinite. Therefore, we only need to consider the setup costs incurred by jumps.
When a jump of type (J2) is made by Ym , the setup cost is equal to the cost incurred by the simultaneous

jump of Y.
Consider two consecutive jumps of type (J3). Let t1 and t2 be their respective jump times with 0 ≤ t1 < t2.

Because X has continuous sample paths and Ym is nondecreasing, it follows from (60) that X(t1) − X(t2) ≥
Zm(t1) −Zm(t2−) ≥ m/2. Let

t3 � inf
{

u ∈ (0, t2 − t1]: X(t1 + u)� X(t1) −
m
2

}
.

By the strong Markov property of Brownian motion, t3 has the same distribution as

τ � inf
{

u > 0: − µu + σB(u)�−m
2

}
,

where B is a standard Brownian motion starting with B(0) � 0. Because τ is the first hitting time of −m/2 by
a Brownian motion with drift −µ, we obtain Ɛx[t3] � m/(2µ). Let Nm , 1(t) be the number of jumps of type (J3)
made by Zm up to time t. Because t2 − t1 ≥ t3, it follows that

Ɛx[Nm , 1(t)] ≤
2µt
m

+ 1.

Now consider two consecutive positive jumps of type (J4). Let t̃1 and t̃2 be their respective jump times with
0 ≤ t̃1 < t̃2. We would like to show that there exists some t̃0 ∈ [t̃1 , t̃2) for which Zm(t̃0) > m/2. Since ∆Ym(t̃2) > 0,
Zm(t̃2−), Z(t̃2−). If Zm(t̃1)� Z(t̃1), t̃0 must exist because otherwise, Ym can only have jumps of type (J2) during
(t̃1 , t̃2) and this yields Zm(t̃2−)� Z(t̃2−), a contradiction. If Zm(t̃1),Z(t̃1), we have Zm(t̃1)� m and thus set t̃0 � t̃1.
Therefore, Zm(t̃0) > m/2 holds for some t̃0 ∈ [t̃1 , t̃2). Let

t̃3 � inf
{

u ∈ (0, t̃2 − t̃0]: X(t̃0 + u)� X(t̃0) −
m
2

}
,

which also satisfies Ɛx[t̃3]� m/(2µ). Let Nm , 2(t) be the number of positive jumps of type (J4) made by Zm up to
time t. Because t̃3 < t̃2 − t̃1, we have

Ɛx[Nm , 2(t)] ≤
2µt
m

+ 1.

Put K̄ � sup{K(ξ): ξ > 0}, which is finite by (S2). By the discussion above,

AC(x ,Ym) −AC(x ,Y) ≤ lim sup
t→∞

1
t
Ɛx[Nm , 1(t)+ Nm , 2(t)]K̄ ≤

4µK̄
m

,

from which we deduce that
lim sup

m→∞
AC(x ,Ym) ≤AC(x ,Y).

By the Bolzano–Weierstrass theorem, {AC(x ,Ym): m � 1, 2, . . .} has a convergent subsequence, so Inequality (17)
holds. �
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8. Optimal Ordering Policy with a Step Setup Cost Function
By Proposition 1 and Theorem 1, we need to solve the following nonlinear optimization problem to obtain the
optimal ordering policy,

min γ(s , S)
s.t. s ≤ S,

(62)

where γ(s , S), given by (13), is the long-run average cost under the (s , S) policy. With a setup cost function
that satisfies (S1)–(S4), one may solve (62) numerically by a standard grid search or a random search (see, e.g.,
Chapter 4 in Hendrix and G-Tóth [24]). When the setup cost function takes certain forms, it is possible to obtain
the optimal solution in a more efficient way. In this section, we consider the optimal ordering policy when the
setup cost is a step function satisfying (S1)–(S4), i.e.,

K(ξ)�
N∑

n�1
Kn · 1(Qn−1 ,Qn )(ξ)+

N−1∑
n�1
(Kn ∧Kn+1) · 1{Qn }(ξ), for ξ ≥ 0, (63)

where N is a positive integer, 0 � Q0 < Q1 < · · · < QN−1 < QN �∞, and K1 , . . . ,KN are nonnegative real numbers
with Kn ,Kn+1 for n �1, . . . ,N−1. The setup cost is Kn for any order quantity within the open interval (Qn−1 ,Qn).
When the order quantity is Qn for n � 1, . . . ,N − 1, we assume that the buyer is required to pay the lower fee
of Kn and Kn+1. This step function encompasses most setup cost structures in the literature and in practice, e.g.,
those in (2)–(3).
When the step setup cost function in (63) has K1 � 0, by placing small orders, the inventory system can be

exempt from setup fees without incurring additional holding and shortage cost. In this case, we may assume
the setup cost to be a zero function. As we discussed in Remark 2, the optimal ordering policy will be a base
stock policy whose base stock level is fixed at z∗. When the setup cost function in (63) has K1 > 0, by Theorem 1
and Proposition 1, the optimal reorder and order-up-to levels must satisfy s∗ < S∗. We may follow a five-step
procedure to obtain the optimal parameters.
Step 1: Obtain z∗ by solving the integral equation (15). If K1 � 0 in (63), taking s∗ �S∗ � z∗, we obtain an optimal

ordering policy, which is a base stock policy with base stock level z∗. The minimum long-run average cost is
ν∗ � γ(z∗ , z∗)� kµ+ h(z∗). Proceed to Steps 2–5 if and only if K1 > 0.
Step 2: Let

Λ(y)�
∫ ∞

−∞
1(−∞, y](g0(u))du , (64)

where g0 is given by (42). For n � 1, . . . ,N , obtain ν̂n by solving the integral equation∫ −k+ν̂n/µ

h(z∗)/µ
Λ(u)du � Kn .

Then, obtain (ŝn , Ŝn) by solving

g0(ŝn)� g0(Ŝn)�−k +
ν̂n

µ
.

Put ξ̂n � Ŝn − ŝn .
Step 3: Define three index sets

N< � {n � 1, . . . ,N : ξ̂n ≤ Qn−1},
N� � {n � 1, . . . ,N : Qn−1 < ξ̂n <Qn},
N> � {n � 1, . . . ,N : ξ̂n ≥ Qn}.

Put

ξ∗n �


Qn−1 if n ∈ N< ,

ξ̂n if n ∈ N� ,

Qn if n ∈ N> .

(65)

Then, define the candidate index set by

N� {n � 1, . . . ,N : K(ξ∗n)� Kn}. (66)
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Step 4: For n ∈ N�, let
sn � ŝn , Sn � Ŝn , νn � ν̂n . (67)

For n ∈ N\N�, obtain (sn , Sn) by solving the system of equations{
Sn − sn � ξ

∗
n ,

g0(sn)� g0(Sn),
(68)

and put

νn � kµ+
K(ξ∗n)µ
ξ∗n

+
µ

ξ∗n

∫ Sn

sn

g0(u)du. (69)

Step 5: Let
n∗ � min{n ∈ N: νn ≤ νi for all i ∈ N}. (70)

Taking
s∗ � sn∗ and S∗ � Sn∗ , (71)

we obtain an optimal ordering policy, which is an (s , S) policy with reorder level s∗ and order-up-to level S∗.
The minimum long-run average cost is ν∗ � γ(s∗ , S∗)� νn∗ , where νn∗ is given by (69)–(70).
The following corollary of Theorem 1 states the optimality of the obtained ordering policy.

Corollary 1. Assume that the setup cost K is given by (63) and that the holding and shortage cost h satisfies (H1)–(H5).
If K1 � 0, the base stock policy U(z∗ , z∗) is an optimal ordering policy that minimizes the long-run average cost, i.e.,
ν∗ � γ(z∗ , z∗)� kµ+ h(z∗), where γ is given by (13). If K1 > 0, with (s∗ , S∗) uniquely determined by Steps 1–5 of the above
algorithm, U(s∗ , S∗) is an optimal ordering policy that minimizes the long-run average cost, i.e., ν∗ � γ(s∗ , S∗).

Let us illustrate how the five-step algorithm yields the optimal ordering policy. We obtain z∗, the minimizer
of g0, at Step 1. By Proposition 1 and Theorem 1, the optimal ordering policy is a base stock policy if K1 � 0,
with z∗ being the optimal base stock level. If K1 > 0, the optimal ordering policy is of the (s , S) type with s < S,
and we obtain the optimal reorder and order-up-to levels by Steps 2–5.
Assuming that the setup cost is a constant Kn for any order quantity, we find the optimal reorder and order-

up-to levels (ŝn , Ŝn) for n � 1, . . . ,N in Step 2. Under this policy, the quantity of each order is ξ̂n and the long-run
average cost is ν̂n . The uniqueness and optimality of the obtained policy can be deduced from the following
lemma.

Lemma 9. Let κ be a nonnegative number. Assume that K(ξ) � κ for all ξ > 0 and that h satisfies (H1)–(H5). Then,
there exists a unique ξ̂ ≥ 0 such that

θ(ξ̂)� inf{γ(s , S): s ≤ S}, (72)

where γ is given by (13) and θ is given by (55). In particular, ξ̂ � 0 if and only if κ � 0. Write

ν̂ � θ(ξ̂), ŝ � s̃(ξ̂), Ŝ � S̃(ξ̂), (73)

where s̃ and S̃ are defined by (47). Then, ν̂ is the unique solution to∫ −k+ν̂/µ

h(z∗)/µ
Λ(u)du � κ and ν̂ ≥ kµ+ h(z∗), (74)

where Λ is given by (64) and (ŝ , Ŝ) is the unique solution to

g0(ŝ)� g0(Ŝ)�−k +
ν̂
µ
. (75)

Moreover, ξ̂, Ŝ, and ν̂ are strictly increasing in κ, whereas ŝ is strictly decreasing in κ.

Remark 9. With a constant setup cost, Bather [8] identified a set of necessary and sufficient conditions for the
optimal (s , S) policy that minimizes the long-run average cost. Those conditions are equivalent to (74)–(75) in
Lemma 9; see (4.2)–(4.4) and (5.4)–(5.5) in Bather [8]. In particular, our Brownian control problem is reduced to
Bather’s problem when N � 1 in (63).
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The next lemma is a technical result for proving Lemma 9 and Corollary 1. It specifies how θ, the minimum
average cost function, changes with the order quantity when the setup cost is assumed to be constant.

Lemma 10. Let κ be a positive number. Assume that K(ξ) � κ for all ξ > 0 and that h satisfies (H1)–(H5). Then, there
exists a unique ξ̂ > 0 such that L(ξ̂)� κ where

L(ξ)�
∫ S̃(ξ)

s̃(ξ)
(g0(s̃(ξ)) − g0(y))dy.

Moreover, the first derivative of θ satisfies 
θ′(ξ) < 0, if 0 < ξ < ξ̂,
θ′(ξ)� 0, if ξ � ξ̂,
θ′(ξ) > 0, if ξ > ξ̂.

(76)

Let Ki be the smallest one of K1 , . . . ,KN . By Lemma 9, ν̂i is the smallest one of ν̂1 , . . . , ν̂N . If K(ξ̂i)�Ki happens
to hold, U(ŝi , Ŝi) must be the optimal (s , S) policy. The setup cost function in (63), however, has imposed a
constraint on order quantities for each setup cost value. When the setup cost is Kn , the quantity of an order is
confined to an interval from Qn−1 to Qn (which, by (63), may be (Qn−1 ,Qn), (Qn−1 ,Qn], [Qn−1 ,Qn), or [Qn−1 ,Qn]).
If ξ̂i <Qi−1 or ξ̂i >Qi , we have K(ξ̂i), Ki , and in either case, U(ŝi , Ŝi) may not be optimal.
With a quantity-dependent setup cost, it is necessary to examine whether each ξ̂n falls into the interval
(Qn−1 ,Qn); if not, we should adjust the order quantity to make it conform with (63). At Step 3, based on the
relative position of ξ̂n to the interval (Qn−1 ,Qn), we define ξ∗n as the point in [Qn−1 ,Qn] that is the closest
to ξ̂n . By Lemma 10, ξ∗n is the optimal quantity when each order is confined in [Qn−1 ,Qn] with setup cost Kn .
Consequently, one of ξ∗1 , . . . , ξ∗N must be the optimal order quantity for the setup cost given by (63). We may
thus seek the optimal policy by examining the policies that fix order quantities at ξ∗n for n � 1, . . . ,N . In this
procedure, rather than examining all of ξ∗1 , . . . , ξ∗N , we may just investigate those in the candidate index set N
defined by (66). We will discuss the candidate index set shortly.
For n ∈ N, we obtain the optimal (s , S) policy with the quantity of each order fixed at ξ∗n . This task is carried

out at Step 4, where the reorder and order-up-to levels are given by (sn , Sn) and the resulting long-run average
cost is given by νn . When the quantity of each order is fixed at ξ∗n with setup cost Kn , U(ŝn , Ŝn) must be the
optimal policy for n ∈ N�, and the long-run average cost is equal to ν̂n . We may thus define (sn , Sn , νn) for
n ∈ N� by (67). By Lemmas 5–6, we can obtain (sn , Sn , νn) by solving (68)–(69) for n ∈ N\N�. Note that not all
of ξ∗1 , . . . , ξ∗N are considered at Step 4. The next lemma implies that it suffices to search for the optimal policy
within the candidate index set N. To state this lemma, let us define

¯
χ(n)� max{ j ∈ N: j < n}, for n ∈ N<\N, (77)

and
χ̄(n)� min{ j ∈ N: j > n}, for n ∈ N>\N. (78)

For n � 1, . . . ,N , put
ν̃n � θn(ξ∗n) (79)

where

θn(ξ)� kµ+
Knµ

ξ
+
µ

ξ

∫ S̃(ξ)

s̃(ξ)
g0(y)dy , for ξ > 0. (80)

Note that νn � ν̃n for n ∈ N.

Lemma 11. Assume that the setup cost function in (63) has K1 > 0 and that h satisfies (H1)–(H5). Then, for each
n ∈ N<\N,

¯
χ(n) defined by (77) exists and satisfies ν

¯
χ(n) < ν̃n; for each n ∈ N>\N, χ̄n defined by (78) exists and satisfies

νχ̄(n) < ν̃n .

It follows from Lemma 11 that ν∗ ≤ ν̃n for all n � 1, . . . ,N , where ν∗ is given by (71) at Step 5. Hence, U(s∗ , S∗)
is the best candidate of the policies obtained by Steps 1–4. Now let us prove the optimality of the obtained
ordering policy.
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Proof of Corollary 1. It suffices to show that (s∗ , S∗) obtained by Steps 1–5 satisfies (14). Then, the corollary
follows from Theorem 1.

Without loss of generality, we may assume K(ξ)� 0 for ξ ≥ 0 if K1 � 0. Then, it follows from Lemma 9 that ξ̂� 0
and thus s̃(0)� S̃(0)� z∗ is the optimal base stock level. Hence, s∗ � S∗ � z∗ and by (13) and (15), ν∗ � kµ+ h(z∗).
Consider the case K1 > 0. If s � S, it follows from (13) that γ(s , S) �∞ because l �∞ by (9). If s < S, put

ξ � S− s and assume that K(ξ)� Kn for n � 1, . . . ,N . By (65), (72), and (76), we obtain θn(ξ) ≥ θn(ξ∗n), where θn
is given by (80). If n ∈ N,

γ(s , S) ≥ θn(ξ) ≥ θn(ξ∗n)� νn ≥ νn∗ ,

where the first inequality follows from (52) and (54), the first equality follows from (47) and (68)–(69), and the
last inequality follows from (70). If n <N, we obtain

γ(s , S) ≥ θn(ξ) ≥ θn(ξ∗n)� ν̃n ≥ νn∗ ,

where the equality follows from (79) and the last inequality follows from Lemma 11. �

9. Conclusion
The optimality of (s , S) policies for inventory systems with constant setup costs is a fundamental result in
inventory theory. Assuming a Brownian demand process, we have extended the optimality of (s , S) policies
to stochastic inventory models with a general setup cost structure. To achieve this, we proved a comparison
theorem that allows one to investigate the optimal policy within a tractable subset of admissible policies. When
the setup cost is a step function, we proposed a policy selection procedure for obtaining the optimal control
parameters. These results have improved the widely used lower bound approach for solving Brownian control
problems and may apply to inventory models with even more general stochastic demand processes, e.g., mean-
reverting diffusions (see Cadenillas et al. [13]) and spectrally positive Lévy processes (see Kuznetsov et al. [28]
and Kyprianou [29]). We look forward to exploring these extensions in future work.
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Appendix. Technical Proofs
This appendix is devoted to the proofs of technical lemmas.

Proof of Lemma 2. By Lemma 1, Zm(t) ≥ m for t ≥ 0, so Z(t) ≤ Zm(t) whenever Z(t) ≤ m. For a fixed t ≥ 0, if Z(u) >m for all
u ∈ [0, t], we must have Y(t)� 0 and thus X(u) > m for all u ∈ [0, t]. It follows that Ym(t)� 0 and thus Z(t)� Zm(t)� X(t). If
Z(t) > m but there exits some u ∈ [0, t) such that Z(u) ≤ m, we put t0 � sup{u ∈ [0, t): Z(u) ≤ m}. We deduce that Z(t0) ≤ m
because otherwise, Z(t0) > m and Z(t0−) ≤ m, which contradicts the assumption that Y ∈ Um . Hence, Z(t0) ≤ Zm(t0) and
t0 < t. Because Z(u) > m for u ∈ (t0 , t], Y(t) −Y(t0) � 0. By (5)–(6), Z(t) � Z(t0)+ X(t) −X(t0). Because Ym has nondecreasing
sample paths,

Zm(t)� Zm(t0)+X(t) −X(t0)+Ym(t) −Ym(t0) ≥ Z(t).
Therefore, Z(t) ≤ Zm(t) for all t ≥ 0. �

Proof of Lemma 3. It suffices to consider Y ∈Um for a fixed positive integer m. Let Zm be the inventory process given by (22),
which is a reflected Brownian motion with lower reflecting barrier at m. Let α be a positive number. By (23),

Ɛx[Zm(t)α] � α

∫ ∞

0
vα−1ψm

x (v , t)dv

≤ α
∫ x∨m

0
vα−1 dv + α

∫ ∞

x∨m
vα−1ψm

x (v , t)dv

≤ (x ∨m)α + α
∫ ∞

x∨m
vα−1Φ

(−v + (x ∨m) − µt
σt1/2

)
dv + α

∫ ∞

x∨m
vα−1e−λ(v−m) dv.

For t > 0 and v > x ∨m, we obtain

−v + (x ∨m) − µt
σt1/2 �−

(
v − (x ∨m)
σt1/2 +

µt1/2

σ

)
≤ −

2µ1/2(v − (x ∨m))1/2
σ

using the inequality of arithmetic and geometric means. Therefore,

Ɛx[Zm(t)α] ≤ (x ∨m)α + α
∫ ∞

x∨m
vα−1Φ

(
−

2µ1/2(v − (x ∨m))1/2
σ

)
dv + α

∫ ∞

x∨m
vα−1e−λ(v−m) dv
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for t ≥ 0. All terms on the right side are finite and none of them depend on t, so

sup
t≥0

Ɛx[Zm(t)α] <∞, for α > 0. (A.1)

Because X(t) ≤ Z(t) ≤ Zm(t) for t ≥ 0,
|Z(t)|α ≤ |X(t)|α +Zm(t)α . (A.2)

Since X(t) follows a Gaussian distribution with mean x − µt and variance σ2,

sup
0≤u≤t

Ɛx[|X(u)|α] <∞, for t ≥ 0. (A.3)

By (24), there exist c0 > 0 and c1 > 0 such that

| f (z)| < c0 + c1 |z |d+1 , for z ∈ �. (A.4)

Then, we deduce that (25) holds from (A.1)–(A.4) and that (26) holds from (24), (A.1)–(A.3), and Tonelli’s theorem. Since
Z(t) ≤ Zm(t) and Zm(t) ≥ m, it follows from (A.4) that

| f (Z(t)) · 1[0,∞)(Z(t))| ≤ c0 + c1Zm(t)d+1 ,

which, along with (A.1), implies that (27) holds. �

Proof of Lemma 4. By (H2)–(H4), limz→±∞ h(y + z)�∞, from which (45) follows. By (43),

g′′0 (z)�
λ3

µ

∫ ∞

0
h(y + z)e−λy dy − λ

2

µ
h(z) − λ

µ
h′(z), for z , 0.

We would show that

g′0(z) > 0, for z ≥ 0, (A.5)
g′′0 (z) > 0, for z < 0, (A.6)

and
lim sup

z→−∞
g′0(z) < 0. (A.7)

By these three conditions and the continuity of g′0, we can deduce that (46) holds with z∗ < 0 and that z∗ must be unique.
Write (43) into

g′0(z)�
λ2

µ

∫ ∞

0
(h(y + z) − h(z))e−λy dy. (A.8)

Then, condition (A.5) follows from (H4). By (H1) and integration by parts,∫ −z

0
h(y + z)e−λy dy �

h(z)
λ

+
1
λ

∫ −z

0
h′(y + z)e−λy dy , for z < 0.

It follows that
g′′0 (z) >

λ3

µ

∫ −z

0
h(y + z)e−λy dy − λ

2

µ
h(z) − λ

µ
h′(z)� λ2

µ

∫ −z

0
h′(y + z)e−λy dy − λ

µ
h′(z).

Since h is convex, h′(y) > h′(z) for y > z. By (H4),

g′′0 (z) ≥
λ2

µ

∫ −z

0
h′(z)e−λy dy − λ

µ
h′(z)�−λ

µ
h′(z)eλz > 0,

so (A.6) holds. By (H2) and (H4), there exist z0 < 0 and c0 > 0 such that h′(z) < −c0 for all z < z0. Because h is polynomially
bounded,

lim
z→−∞

∫ ∞

z0−z
(h(y + z) − h(z))e−λy dy � 0.

Then by (A.8),

lim sup
z→−∞

g′0(z)� lim sup
z→−∞

λ2

µ

∫ z0−z

0
(h(y + z) − h(z))e−λy dy ≤ − lim

z→−∞

λ2c0

µ

∫ z0−z

0
e−λy y dy �− c0

µ
,

which leads to (A.7). �
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Proof of Lemma 5. For ξ > 0 and s ∈ �, put

G(s , ξ)� g0(s + ξ) − g0(s)�
∫ s+ξ

s
g′0(y)dy.

By (42), (43), and (H3), G is continuously differentiable on �× (0,∞). If G(s , ξ) � 0, we must have s < z∗ < s + ξ by (46). Let
ξ > 0 be fixed. Then, G(s , ξ) is continuous and strictly increasing in s on [z∗ − ξ, z∗], with G(z∗ − ξ, ξ) < 0 and G(z∗ , ξ) > 0.
Hence, there exists a unique s � s̃(ξ) such that G(s , ξ) � 0, by which we deduce that both (47) and (48) hold. The limits in
(49) follows from (45) and (47). Using (46) again, we obtain

∂
∂s

G(s̃(ξ), ξ)� g′0(S̃(ξ)) − g′0(s̃(ξ)) > 0, for ξ > 0.

By the implicit function theorem (see, e.g., Theorem 11.1 in Protter [40]), s̃ must be a differentiable function on (0,∞).
By (46)–(48),

∂
∂ξ

G(s̃(ξ), ξ)� g′0(s̃(ξ)+ ξ)� g′0(S̃(ξ)) > 0.

The implicit function theorem also implies that

s̃′(ξ)�−∂G(s̃(ξ), ξ)/∂ξ
∂G(s̃(ξ), ξ)/∂s

�−
g′0(S̃(ξ))

g′0(S̃(ξ)) − g′0(s̃(ξ))
< 0.

It follows from (46)–(48) that

S̃′(ξ)� s̃′(ξ)+ 1 �−
g′0(s̃(ξ))

g′0(S̃(ξ)) − g′0(s̃(ξ))
> 0.

By (49) and L’Hôpital’s rule,

lim
ξ→∞

1
ξ

∫ S̃(ξ)

s̃(ξ)
g0(y)dy � lim

ξ→∞
(s̃′(ξ)+ 1)g0(S̃(ξ)) − lim

ξ→∞
s̃′(ξ)g0(s̃(ξ)).

Then using (45), (47), and (49), we obtain

lim
ξ→∞

1
ξ

∫ S̃(ξ)

s̃(ξ)
g0(y)dy � lim

ξ→∞
g0(S̃(ξ))�∞. �

Proof of Lemma 6. By (46) and (53), θ(0)� γ̃(z∗ , 0)� γ̃(s̃(0), 0), so Equation (55) holds for ξ � 0. For ξ > 0, Lemma 5 implies
that s � s̃(ξ) is the unique solution to ∂γ̃(s , ξ)/∂s � 0. By (46)–(48), this solution also satisfies

∂2

∂s2 γ̃(s̃(ξ), ξ)�
µ

ξ
g′0(S̃(ξ)) −

µ

ξ
g′0(s̃(ξ)) > 0,

so Equation (55) also holds for ξ > 0.
By (9) and (53),

lim inf
ξ↓0

θ(ξ)� (k + l)µ+ lim inf
ξ↓0

µ

ξ

∫ S̃(ξ)

s̃(ξ)
g0(y)dy.

Since Inequality (48) implies that s̃(0+)� z∗, we obtain lim infξ↓0 θ(ξ)� θ(0), so θ is lower semicontinuous at zero. For ξ̃ > 0,
because K is lower semicontinuous, it follows from Proposition B.1 in Puterman [41] that

K(ξ̃)
ξ̃
≤ lim inf

ξ→ξ̃

K(ξ)
ξ

.

By Lemma 5, s̃ is continuous on [0,∞), by which we obtain∫ S̃(ξ̃)

s̃(ξ̃)
g0(y)dy � lim

ξ→ξ̃

∫ S̃(ξ)

s̃(ξ)
g0(y)dy.

It follows that θ(ξ̃) ≤ lim infξ→ξ̃ θ(ξ), and thus θ is lower semicontinuous on [0,∞).
Since the setup cost is nonnegative, it follows from (51) that limξ→∞ θ(ξ)�∞. �

Proof of Lemma 7. By (51), there exists 0 < ξ̄ <∞ such that

µ

ξ̄

∫ S̃(ξ̄)

s̃(ξ̄)
g0(y)dy > γ(s∗ , S∗). (A.9)

Take s � s̃(ξ̄). If s ≥ s, we have γ̄(s , ξ)� γ̃(s , ξ) by (53), in which case (58) follows from (14) and (52).
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It remains to prove (58) for s < s, which relies on the following inequalities deduced from (46)–(48),{
g0(y) < g0( s)� g0( s + ξ̄) for s < y < s + ξ̄,
g0(y) > g0( s)� g0( s + ξ̄) for y < s or y > s + ξ̄.

Clearly,

g0( s) >
1
ξ̄

∫ s+ξ̄

s
g0(y)dy. (A.10)

If s ≤ s − ξ,
1
ξ

∫ s+ξ

s
g0(y ∨ s)dy � g0( s).

It follows from (A.10) that
1
ξ

∫ s+ξ

s
g0(y ∨ s)dy >

1
ξ̄

∫ s+ξ̄

s
g0(y)dy. (A.11)

Then by (A.9),

γ̄(s , ξ) > kµ+
K(ξ)µ
ξ

+
µ

ξ̄

∫ s+ξ̄

s
g0(y)dy > γ(s∗ , S∗). (A.12)

If s − ξ < s < s ∧ ( s + ξ̄ − ξ), ∫ s+ξ

s
g0(y ∨ s)dy �

∫ s+ξ

s
g0(y)dy + ( s − s)g0( s) >

∫ s+ξ

s
g0(y)dy ,

which implies that γ̄(s , ξ) > γ̃( s , ξ), and thus (58) follows from (14) and (52). If s + ξ̄ − ξ ≤ s < s,∫ s+ξ

s
g0(y ∨ s)dy > ( s − s)g0( s)+

∫ s+ξ̄

s
g0(y)dy + (s + ξ − s − ξ̄)g0( s + ξ̄)�

∫ s+ξ̄

s
g0(y)dy + (ξ − ξ̄)g0( s),

where the last equality follows from (47). Then,

1
ξ

∫ s+ξ

s
g0(y ∨ s)dy >

1
ξ

∫ s+ξ̄

s
g0(y)dy +

ξ − ξ̄
ξ

g0( s) >
1
ξ

∫ s+ξ̄

s
g0(y)dy +

ξ − ξ̄
ξ
· 1
ξ̄

∫ s+ξ̄

s
g0(y)dy �

1
ξ̄

∫ s+ξ̄

s
g0(y)dy ,

where the second inequality follows from (A.10). This implies that (A.11) holds for s + ξ̄− ξ ≤ s < s, and so does (A.12). �

Proof of Lemma 8. Clearly, Ym ∈ Um . Both from Zm(0−) � Z(0−) � x, these two inventory levels satisfy Zm(0) ≤ Z(0)
by (J1)–(J4). For t ≥ 0, let

t0 � sup{u ∈ [0, t]: u ∈ Im\J, ∆Ym(u) > 0},
with the convention sup� � 0. Then, Zm(t0) ≤ Z(t0) by (J4). If there is some u ∈ (t0 , t] for which ∆Ym(u) > 0, it must be of
type (J2) or (J3) and thus ∆Ym(u) ≤∆Y(u). Because Yc is nondecreasing, it follows from (61) that Yc

m(t)−Yc
m(t0) ≤Yc(t)−Yc(t0).

Hence, Zm(t) ≤ Z(t) for t ≥ 0.
Consider some t ≥ 0 for which Zm(t) < 0. If x ≤ m/2 and Zm(u) ≤ m/2 for all u ∈ [0, t], we have Yc

m(t) � Yc(t) by (61) and
∆Ym(u) � ∆Y(u) for all u ∈ [0, t] by (J2). Hence, Zm(t) � Z(t). If there exists some t1 ∈ [0, t) such that Zm(t1) > m/2, let us
consider the time

t2 � sup{u ∈ [t1 , t): Zm(u) > 0}.
Since Zm does not have downward jumps, we have Zm(t2−) � 0 and ∆Ym(t2) � 0, which yields Zm(t2) � 0. Then, Z(t2) ≥ 0
because Zm(t2) ≤ Z(t2). If Z(t2) > 0, we can deduce from (J2)–(J4) that ∆Ym(t2) > 0, a contradiction. Hence, Zm(t2)� Z(t2)� 0.
Because Zm(u) ≤ 0 for all u ∈ [t2 , t], we have Yc

m(t)−Yc
m(t2)�Yc(t)−Yc(t2) by (61) and ∆Ym(u)�∆Y(u) for all u ∈ [t2 , t] by (J2).

It follows that Zm(t)� Z(t) < 0 holds. �

Proof of Lemma 9. Let us first prove the uniqueness and monotonicity of the solutions to (74)–(75). By (46), g0 has the
minimum value at z∗. Put

I(u)�
∫ u

g0(z∗)
Λ(y), dy , for u ≥ g0(z∗).

Then, I(u) is a continuous function of u, with I(g0(z∗)) � 0. Because Λ(y) is nondecreasing in y and Λ(y) > 0 for y > g0(z∗),
I(u) is strictly increasing in u when u > g0(z∗) and I(u) →∞ as u→∞. Hence, for each κ ≥ 0, there is a unique û ≥ g0(z∗)
such that I(û)� κ. In addition, û is strictly increasing in κ. By (15) and (42), g0(z∗)� h(z∗)/µ, so the solution to (74) is unique
and ν̂ is strictly increasing in κ. Note that g0(z∗) ≤ −k + ν̂/µ. The uniqueness of the solution to (75) also follows from (46).
Moreover, ŝ is strictly decreasing in ν̂ and Ŝ is strictly increasing in ν̂. Then, their monotonicity in κ follows from that of ν̂.
The monotonicity of ξ̂ in κ follows from the fact that ξ̂ � Ŝ− ŝ.
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Next, let us prove the optimality of (ŝ , Ŝ). When κ � 0, by (53) and (55),

θ(ξ)�


kµ+

µ

ξ

∫ S̃(ξ)

s̃(ξ)
g0(y)dy , for ξ > 0,

kµ+ µg0(z∗), for ξ � 0.

By (46), θ(0) < θ(ξ) for ξ > 0, so ξ̂ � 0 is the unique solution to (72). If κ > 0, we obtain θ(0)�∞ by (53) since l �∞. Hence,
ξ̂ � 0 if and only if κ � 0. By (15) and (42), ν̂ � kµ+ h(z∗) and ŝ � Ŝ � z∗, and they satisfy (74) and (75), respectively.

When κ > 0, the uniqueness of ξ̂ follows from Lemma 10. It remains to show ν̂ satisfies (74) and (ŝ , Ŝ) satisfies (75).
By (47), (53), (55), and the fact that L(ξ̂)� κ, we obtain

θ(ξ̂)� kµ+ µg0(s̃(ξ̂)).

Then, (75) follows from (47) and (73). By Tonelli’s theorem and (46),

L(ξ)�
∫ g0(s̃(ξ))

g0(z∗)

∫ S̃(ξ)

s̃(ξ)
1(−∞, y](g0(u))du dy �

∫ g0(s̃(ξ))

g0(z∗)

∫ ∞

−∞
1(−∞, y](g0(u))du dy � I(g0(s̃(ξ))).

Using (75) and the fact that L(ξ̂)� κ, we obtain I(−k + ν̂/µ)� κ, so ν̂ satisfies (74). �

Proof of Lemma 10. By (46)–(47), g0(y) < g0(s̃(ξ)) � g0(S̃(ξ)) for s̃(ξ) < y < S̃(ξ). Then by (47) and (50), L is continuous and
strictly increasing, with L(0)� 0. By (45) and (49), L(ξ)→∞ as ξ→∞. It follows that for each κ > 0, there is a unique ξ̂ > 0
such that L(ξ̂)� κ.

By (47), (53), and (55),

θ(ξ)� kµ+
κµ

ξ
+
µ

ξ

∫ S̃(ξ)

s̃(ξ)
g0(y)dy ,

the first derivative of which is

θ′(ξ)�−
κµ

ξ2 −
µ

ξ2

∫ S̃(ξ)

s̃(ξ)
g0(y)dy +

µ

ξ
(g0(S̃(ξ))(s̃′(ξ)+ 1) − g0(s̃(ξ))s̃′(ξ)).

Using (47) again, we obtain

θ′(ξ)�−
κµ

ξ2 −
µ

ξ2

∫ S̃(ξ)

s̃(ξ)
g0(y)dy +

µ

ξ
g0(s̃(ξ))�

µ(L(ξ) − κ)
ξ2 .

Then, (76) follows from the fact that L(ξ̂)� κ and the monotonicity of L. �

Proof of Lemma 11. Suppose that there exists some n ∈N<\N such that
¯
χ(n) does not exist, i.e., K(ξ∗j),K j for j � 1, . . . , n−1.

Since K1 > 0, Lemma 9 implies that ξ̂1 > 0�Q0, so 1<N< and n ≥ 2. Because ξ∗n �Qn−1 and K(ξ∗n),Kn , K(ξ∗n)�K(Qn−1)�Kn−1.
If n − 1 ∈ N>, we should have K(ξ∗n−1) � K(Qn−1) � Kn−1, contradicting the hypothesis that K(ξ∗n−1) , Kn−1. It follows that
n − 1 ∈ N<\N. By induction, we obtain {1, . . . , n − 1} ⊆ N<\N, which contradicts the fact that 1 <N<. Hence,

¯
χ(n) must exist.

For n ∈ N<\N, the above arguments also imply that {
¯
χ(n)+ 1, . . . , n} ⊆ N<\N, which yields K

¯
χ(n) < · · · < Kn . By Lemma 9,

ξ̂
¯
χ(n) < ξ̂

¯
χ(n)+1 ≤ Q

¯
χ(n) ,

so
¯
χ(n) ∈ N� ∪N<. It follows that

ν̃n � θn(Qn−1) > θ
¯
χ(n)(Qn−1) > θ

¯
χ(n)(ξ∗

¯
χ(n))� ν̃

¯
χ(n) ,

where the first equality is due to the fact that ξ∗n �Qn−1, the first inequality is due to the fact that K
¯
χ(n) < Kn , and the second

inequality is due to (76) and the fact that
ξ̂

¯
χ(n) ≤ ξ∗

¯
χ(n) <Q

¯
χ(n) ≤ Qn−1.

Since ν̃ j � ν j for j ∈ N, we obtain ν̃n > ν
¯
χ(n).

Using the fact that ξ̂N <QN �∞, we can follow similar arguments to prove that χ̄(n) exists and that νχ̄(n) < ν̃n for n ∈N>\N.
The details are thus omitted. �

Endnote
1 In certain periodic-review models, (s , S) policies may still be optimal even though the setup cost function takes a general form. For
example, if periodic demands are independent, identically-distributed Bernoulli random variables and order quantities must be integer-
valued, we may still expect an (s , S) policy to be optimal under a general setup cost structure. This is because in each period, the inventory
level will decrease by zero or one unit, which enables the manager to freely choose the reorder and order-up-to levels as in the Brownian
demand case.
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