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Abstract

Sparsity is a fundamental concept in compressive sampling of signals/images, which is commonly

measured using thè0 norm, even though, in practice, the`1 or the `p (0 < p < 1) (pseudo-) norm

is preferred. In this paper, we explore the use of theGini index (GI), of a discrete signal, as a more

effective measure of its sparsity for a signi�cantly improved performance in its reconstruction from

compressive samples. We also successfully incorporate theGI into a stochastic optimization algorithm

for signal reconstruction from compressive samples and illustrate our approach with both synthetic and

real signals/images.

I. INTRODUCTION

In many applications, it is often desired to reconstruct a discrete signal from a set of incomplete

observations in the spatial/time domain or in one of its transform domains. This is not possible in

general, unless we assume some constraints on the signal of interest in either of the two domains. In

many natural signals, it is indeed the case that there is sparsity in a spatial/time (or transform domain)

and the goal of many researchers is to exploit this sparsity by employing a smaller number (than normally

required) of samples, calledcompressive samples, in order to reconstruct the original signal.

In most of the current literature on compressive sampling, sparsity is measured using the`0 norm of

a vector. If the original signalf needsN samples for its complete speci�cation in the spatial domain,

but hasZ zeros in it, it is said to beK -sparse, whereK = N � Z . When f has no nonzero elements

but hasZ elements which have magnitudes which are small, then we can extend the above de�nition to

“approximateK -sparsity”: if there exists af � 2 RN which is K -sparse, andinf jj (f � f � )jjp is small,

where the subscriptp � 1 denotes thèp (pseudo-) norm, thenf is approximatelyK -sparse.
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The desire to use onlym � N compressive samples to reconstruct the original signal/image leads

to the problem of solving an under-determined system of linear equations, which can be formulated as

follows: Let f be theK -sparse signal of interest and letA denote the sampling matrix of sizem � N .

If y = Af are the compressive samples, the problem is then to recoverf from y, assuming that we only

know that the signal of interest is sparse. Equivalently, weneed to �nd a vectorg; which is an estimate

of f in the presence of noise, havingjjgjj `0 nonzero elements, as a solution to the following problem:

min
g2 RN

jjgjj `0 subject to jjAg � yjj � � (1)

Solving the above minimization problem is known to be computationally unwieldy in view of its

NP-hard nature. As a consequence, a majority of the literature on compressive sampling (e.g. [1], [2])

propose an alternative convex`1 minimization approach. It is hoped that, by minimizingkgk`1 we can

estimateg which is (approximately) equivalent to the estimate ofg in (1). In fact, it has been shown that

under some conditions, these solutions are the same [1]. The`p (pseudo-) norm for0 < p < 1; has been

recently proposed ( [3]–[5]) as a measure of sparsity which is a closer approximation of thè0 than the

`1 norm. The convergence, stability analyses and the conditions under which the original signal can be

recovered uniquely, are discussed in [6], [7].

As demonstrated in [8], and as shown by our experiments in thefollowing sections, thè 1 norm and

`p (pseudo-) norm quantify sparsity in a way that runs counter to an intuitive understanding of sparsity.

As an alternative measure of sparsity, we show in this paper that the Gini index (GI) not only overcomes

the limitations of standard norm-based sparsity measures [8] but is also able to reconstruct signals from

compressive samples more accurately and ef�ciently.

II. SPARSITY AND ITS MEASURES

In signal representation, we can de�nepractical sparsity in many ways. For instance, a signal is sparse

if the number of the non-zero coef�cients in its representation is small compared to its dimension. But in

the case of real signals, this de�nition may not be practical. Alternatively, a signal is sparse if itsenergy

is concentrated in a small number of coef�cients of its representation. As applied to an image, such a

sparsity is scale invariant, which means that multiplying all the coef�cients of the image representation

by a constant does not affect its sparsity. Such a property, which is indeed desirable in the context of

image reconstruction from sparse samples, is clearly not satis�ed by `1 or `p, as a sparsity measure. In

general, a sparsity measure should depend on the relative distribution of energy among the coef�cients, as

a fraction of the total energy, and not be calculated based solely on the absolute value of each coef�cient.
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In fact, a good measure should be a weighted sum of coef�cients of signal representation, based on

the importance of a particular coef�cient in the overall sparsity. As a consequence, any slight change in

the value of a coef�cient will affect sparsity only relativeto the weight of that coef�cient, which is a

desirable property. More explicitly, large coef�cients should have a smaller weight compared to the small

ones so that they do not in�uence the sparsity measure in a waythat does not respond to the changes of

the smaller coef�cients.

The authors of [8] examine and compare quantitatively, several commonly-used sparsity measures

based on intuitive and desirable attributes which they callRobin Hood, Scaling, Rising Tide, Cloning,

Bill Gates, andBabies. Their �nding is that only the Gini index (GI), which is de�ned below, has all

these attributes.

Gini Index (GI): Given a vectorf = [ f (1); :::; f (N )]; with its elements re-ordered and represented by

f [k] for k = 1 ; 2; � � � ; N; wherejf [1]j � j f [2]j; � � � ; � j f [N ]j; then

GI ( f ) = 1 � 2
NX

k=1

jf [k]j

jj f jj1

�
N � k + 1=2

N

�
; (2)

wherejj f jj1 is the `1 norm of f : We show in Appendix thatGI (f ) is a quasi-convexfunction in jf j.

An important advantage of GI over the conventional norm measures is that it isnormalized, and

assumes values between 0 and 1 for any vector. Further, it is0 for the least sparse signal with all the

coef�cients having an equal amount of energy; and1 for the most sparse one which has all the energy

concentrated in just one coef�cient. This gives us a meaningful measure, exhibiting the sparsity of the

distribution. Moreover, unlike other norm measures, the value of GI is independent of the size of the

vector, thereby enabling us to compare the sparsity of vectors of different sizes. As mentioned above, it

is also scale-invariant and independent of the total energyof the signal. As a consequence, it is ideally

suited for comparing the sparsity of a signal in different transform domains. When applied to the problem

of signal reconstruction from compressive samples, GI facilitates the discovery of the sparsest domain of

transform, if there is any. For example, consider the phantom image (Fig. 5) of size512� 512. The GI of

this image in different transform domains is presented in Table I, from which we can easily conclude that

the phantom image is most sparse in the gradient domain and least sparse in the DFT domain. Moreover,

with such a de�nition, it turns out that there is no need to de�ne explicitly approximate sparsity measures:

when GI is large (i.e., close to 1), then the signal has only a few values which are dominant; and when

the GI is small, the signal has very few dominant values. For instance, thè0 norm does not take into

account the energy distribution of the non-zero elements. Consider the two signalsX 1 = [10; 1; 1; 0] and

X 2 = [4 ; 4; 4; 0]. Their sparsity according to thè0 norm is the same. However, intuitively, the sparsity
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of X 1 should be more thanX 2, since most of the signal energy is concentrated in just one element. For

other examples (of similar synthetic vectors) which demonstrate that GI is more general and consistent

thanK � sparsity, see [8].

The above observations serve as motivation for the use of GI as a sparsity measure for signal re-

construction from sparse samples. However, it should be noted that GI, which is neither a norm nor,

even, apseudo-norm(like the `p for 0 < p < 1), has some undesirable characteristics, too. For

instance, the GI of two signals cannot be algebraically manipulated to compute the GI of a composite

signal. Further, we cannot analyze the sparsity of a signal by decomposing it into smaller segments, and

computing the sparsity of each for summation later. Moreover, there seems to be no mathematical results

that deal with conditions on the measurement matrixA for recovering uniquely the original signals from

compressive samples when GI is invoked as a sparsity measure. The existing constraints of null space

(NS) and restricted isometry properties (RIP) ofA for unique reconstruction [9] ofK -sparse signals from

compressive samples arenot applicable here. This is left as a challenging problem.

Based on the GI as a sparsity measure, we can formulate the basic problem of reconstruction as follows:

Problem: Given the measurementsy; �nd a vector g (which is an estimate off ), as a solution to the

following optimization problem:

max
g2 RN

GI ( g) subject to Ag = y: (3)

When the measurement is corrupted by noise, the signal reconstruction problem can be formulated as

a corollary to the above.

Corollary: Given the measurementsy = Af + � ; where � is the noise vector, satisfying the inequality

jj � jj2 � �; �nd a vectorg (which is an estimate off ), as a solution to the following optimization problem:

max
g2 RN

GI ( g) subject to jjAg � yjj2 � � (4)

III. PROPOSEDAPPROACH

Our goal is to �nd the sparsest solution, in the sense of GI, among the set of admissible signals. To

this end, we make use of the“Simultaneous Perturbation Stochastic Approximation” (SPSA)[10] to �nd

a solution to (3).

In the reconstruction of real images, any optimization algorithm must be able to contend with the high

dimension of the problem and noisiness in the measurements of the chosen objective function. SPSA has

been found to be ef�cient for this purpose by providing a satisfactory solution using a relatively small
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number of measurements of the objective function. SPSA usesobservations of the desired performance

function (which, in our application, is the GI of the signal)without a direct reference to its gradient.

It approximates the gradient using only two performance function observations per iteration, regardless

of the dimension of the signal. The two observations are madeby simultaneously varying randomly all

the variables in the performance function. This essential feature of the SPSA makes it a powerful and

relatively easy to use tool for dif�cult multivariate optimization problems.

Further, for global optimization in the face of multiple local optima, it has been established [11] that

the SPSA converges under fairly general conditions including piecewise differentiability of the objective

function and Lipschitz continuity of its gradient.

A. SPSA Algorithm

Assume thatf is the original sparse vector which is being measured using amatrix A, andy is the

set of observations,y = Af . Let � (� ) be the function to be maximized over a vector of parameters,� .

In our application,� is the GI of the admissible signals. It is assumed that measurements of� (� ) are

available at various values of� . The standard SPSA invokes the Lagrangian multiplier method to include

constraints. In contrast, we employ a different strategy todeal with constraints for both noise-less and

noisy measurements: in each iteration, we project� onto the set of feasible solutions.

In the case of measurements free from noise, let the set of� that satisfy the observations be denoted

by O = f � : A� = yg. Then, withAy denoting the pseudo-inverse ofA; P (� ) = ( � � Ay(A� � y)) is

the nearest point to� on O; or, in other words,P(� ) is the projection of� onto setO.

Starting from the point� 0, at each step, we simultaneously perturb all elements of� k according to

a distribution vector (� k ) whose elements are usually (but not necessarily) generated by a Bernoulli

distribution. We then evaluate� (� k + � k � k ) and � (� k � � k � k ), and update� as follows:

� k+1 = P
�

� k + � k
� (� k + � k � k ) � � (� k � � k � k )

2� k
� � 1

k

�
(5)

where the gain sequence� k := �
(B + k+1)  , and the small positive time-varying constant� k := �

(k+1) � . The

inverse of� k vector is de�ned to be an element-wise inverse, hence for theBernoulli distribution� � 1
k = � k .

The algorithm terminates when it converges to a solution or when the maximum number of iterations is

reached. In the case of measurements with noise, the setO becomesO� = f � : jjA� � yjj r < � g; and

P(� ) = arg min x fjj x � � jj2 s:t: x 2 O � g.
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B. Choice of SPSA parameters

Spall [12] provides general guidelines for choosing appropriate values for the parameters. Variables

 and � are recommended to be set to 0.602 and 0.101, respectively; the constantB to 10% (or less)

of the maximum number of expected iterations; and the parameter � to the standard deviation of the

measurement noise. When the noise is small,� is chosen as 0.01. It is recommended to choose� such

that the product� 0( � (� 0 + � 0 � 0 )� � (� 0 � � 0 � 0 )
2� 0 � 0

) is approximately equal to the smallest desired step size during

the early iterations. Of all the SPSA parameters, selecting� requires the most effort, because it is often

dif�cult to know ahead of time what a good initial step size should be. If the value of� is chosen to be

too small, it can signi�cantly increase the number of SPSA iterations required to reach the minima, while

large values of� lead to unstable, diverging solutions. However, it has beenshown through experimental

evaluation that a wide range of� values will yield satisfactory results [13]. In the experiments presented

here,� is set to a value in the range, 100 - 150. Finally, the vector� k is so chosen as to have a Bernoulli

distribution [14].

IV. EXPERIMENTAL RESULTS

In this section, we present experiments that evaluate the performance of GI as a sparsity measure in

comparison with other conventional norm measures for 1D signals and 2D images. In all our experiments,

we minimized (a) thè p-norm (p = 0 :1) using the algorithm in [6]; and (b) thè1-norm using NESTA

[15].

A. One-Dimensional Signals

We �rst generate 100 random signals of sizeN = 1000 with K = 100, (i.e., 90% of the elements

are zero) and then usem samples (wherem is arbitrary) to measure the signals. For each choice of

m; we select randomly the entries of the sampling matricesA of size m � N; from a mean-zero

Gaussian distribution. With the GI as the sparsity measure,we reconstruct the signals, and compare

the reconstructions with those obtained by employing`1 and `p norms as the sparsity measures.

Figure 1 shows the success rate for perfect signal recovery versus the number of measurements for

each sparsity measure. It is observed that our method outperforms the`1 and`p approaches in recovering

the original signal.

In order to test the robustness of the GI as a measure of sparsity, we conducted two sets of experiments.

In the �rst set, we performed the same experiment as discussed above, except that this time the mea-

surements were corrupted with Gaussian noise (SNR=35). Theequality constraints in all minimization
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Fig. 1. Perfect signal recovery as a function of the number ofsamples.

problems are changed to inequality constraints with a same value of � (proportional to the standard

deviation of the noise). Figure 2 shows the mean square error(MSE) of the reconstructed signals versus

the number of measurements. It is seen that our GI-based method signi�cantly outperforms thè1 and

`p norm-based approaches in recovering the original signal more accurately. In the second test, we (i)

generate 100 random signals of size 1000 with 100 non-zero elements; (ii) make 350 measurements; and

corrupt them with different levels of noise; and (iii) plot the MSE of the reconstructed signals versus

SNR of the noise. Again the value of� is the same for all methods. It is evident from Figure 3 that the

GI-based method is superior to the`1 and `p norm-based approaches, in general, and more signi�cantly

when a high amount of noise is present.
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Fig. 2. MSE of the reconstructed signal versus number of samples taken for noisy signals.

B. Two-Dimensional Signals

Figures 4 and 5(a) show the images used in our experiments while Table I presents the GI values

evaluated for these images in different representation domains. From Table I, it is evident that the wavelet
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Fig. 3. MSE of the reconstructed signals vs. SNR of the noise.

domain is the sparsest for all chosen images except for the phantom image for which its gradient domain

is the sparsest. The GI values in the table exhibit the extentof sparsity in the images more transparently

than what can be discovered with the help of`p norm-based measures.

(a) Boat,512� 512 (b) Man,512� 512 (c) MRI , 512� 512 (d) CT , 256� 256 (e) Peppers,256 � 256 (f) Hill, 512� 512

Fig. 4. Original test images

Images/Domain Spatial DCT DFT Wavelets Gradient

Boat 0.1922 0.6948 0.6508 0.8832 0.6282

Man 0.2450 0.6626 0.6099 0.8838 0.6099

MRI 0.5560 0.7132 0.6736 0.9389 0.8350

CT image 0.4534 0.8449 0.6098 0.9155 0.8165

Peppers 0.2467 0.6996 0.6552 0.8970 0.6771

Hill 0.2448 0.6570 0.6150 0.8781 0.6036

Phantom 0.6977 0.7600 0.5664 0.8887 0.9846

TABLE I

COMPARISON OF THEGI OF DIFFERENT TRANSFORM DOMAINS FOR THE TEST IMAGES.
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(a) Original image (b) Sampling mask (c) `1 (d) TV (e) `0 [4] (f) GI

Fig. 5. Comparison of̀ 1-, T V -, `0- and GI-based reconstruction of the phantom image.

For the reconstruction of the MRI-phantom image of size256� 256, we use the samples along only 9

radial lines (see Fig. 5(b)) in its Fourier domain, and maximize the GI of its gradient magnitude. From

Fig. 5, which also contains the results of`1- and `0-based [4] reconstructions, it can be seen that our

(GI-based) method outperforms the others in reconstructing the image from only 9 radial lines.

When applying our algorithm to various images, we maximizedthe GI of the wavelet coef�cients,

subject to random observations in the Fourier domain. Theseresults were then compared with those

obtained byminimizing(a) Total Variation (TV)-norm, (b)̀ 1, and (c)`p; p = 0 :1. In the case of noisy

measurements, the same value of� has been used for all algorithms. From Table II, which presents

the PSNR of the reconstructed images using these different approaches, it is clear that the GI-based

reconstruction is superior to reconstruction using the TV,`1 and `p norm based minimizations for most

of the test images.

From Table II, our method appears to be inferior to TV minimization in terms of PSNR for the CT

and Pepper test images. However it is evident from Fig. 6 thatimages reconstructed using the GI-based

method are perceptually better with less loss of details. Moreover, TV minimization blurs the output,

thereby affecting the visual quality, which, in medical images, may lead to loss of important minutiae,

such as small vessels.

V. CONCLUSIONS

For the reconstruction of signals/images from compressivesamples, we have explored the use of the

Gini index (GI) as a sparsity measure. The GI, is a more reliable and robust alternative to the currently

popular `p (pseudo-) norm-based (for0 < p � 1) sparsity measure [8]. Furthermore, our proposed GI-

based stochastic optimization method to reconstruct signals and images has been shown to be superior

over other commonly used norm based minimization methods. An interesting challenge would be to
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Noise-less images Noisy images

Input Data PSNR

Image name % of TV `1 `p GI Noisy image TV `1 `p GI

Samples min. min. min. max. min. min. min. max.

Boat 50% 31.77 32.23 33.12 34.71 25.36 26.92 24.91 27.06 29.81

Man 38% 30.35 30.55 30.36 34.64 26.44 25.72 27.79 28.11 29.01

MRI 27% 32.66 34.11 39.27 42.98 27.11 30.42 28.01 29.04 32.28

CT image 27% 36.07 33.61 32.81 35.81 26.73 28.91 26.12 27.43 29.10

Peppers 39% 32.90 29.66 28.52 31.82 25.55 25.81 23.64 26.09 25.83

Hill 39% 31.51 25.52 30.90 33.12 26.12 27.82 26.54 26.78 27.65

TABLE II

PSNROF THE RECONSTRUCTED IMAGES IN NOISE-LESS AND NOISY SETTINGS.

establish the theoretical conditions under which exact reconstruction is possible with GI as a signal

sparsity measure.
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APPENDIX

GI, which has been de�ned in (2), can also be expressed as follows:

GI ( f ) =

P N
i =1

P N
j =1

�
�
� jf (i ) j � j f (j ) j

�
�
�

2N jj f jj1

; (6)

Proof: From (6), we have

GI ( f ) =
2

P N
i =1

P N
j = i +1

�
�
� jf (i ) j � j f (j ) j

�
�
�

2N jj f jj
1

=
2

� �
�
� jf (1) j � j f (2) j

�
�
� + � � � +

�
�
� jf (N � 1) j � j f (N ) j

�
�
�
�

2N jj f jj
1

Suppose thatjf (a)j is thek� th element in the sorted vector thenjf (a)j = jf [k]j. In the numeratorjf (a)j

is compared with the other (N � 1) elements. It is clear that ifjf (a)j = jf [k]j, then (k � 1) of f elements

are smaller thanjf (a)j, while (N � k) elements off are greater. Therefore, we have

�
�
� jf (1) j � j f (2) j

�
�
� + � � � +

�
�
� jf (1) j � j f (N ) j

�
�
� + � � � +

�
�
� jf (N � 1) j � j f (N ) j

�
�
� =

NX

k=1

(k � 1)jf [k]j � (N � k)jf [k]j:

Then it follows that

GI ( f ) =
2

P N
i =1

P N
j = i +1

� �
�
� jf (i ) j � j f (j ) j

�
�
�
�

2N jj f jj
1

=
2

P N
k=1 ((k � 1)jf [k]j � (N � k)jf [k]j)

2N jj f jj
1

=
2

P N
k=1 (kjf [k]j) � jj f jj1 � N jj f jj1

N jj f jj1

=
N jj f jj1 + 2

P N
k=1 (kjf [ k ] j) � jj f jj1 � 2N jj f jj1

N jj f jj1

= 1 +
2

P N
k=1 (kjf [k]j) � jj f jj1 � 2N jj f jj1

N jj f jj1

which is the same as (2).

To show thatGI (f ) is quasi-convex injf j, it is suf�cient to show that the sub-level sets of Eqn. (6)

are convex sets [16]. Thec-sublevel set can be written as:
P N

i =1
P N

j =1

�
�
� jf (i )j � j f (j )j

�
�
�

2N jj f jj
1

� c;

We can rewrite this as :
NX

i =1

NX

j =1

�
�
� jf (i )j � j f (j )j

�
�
� � 2cN jj f jj1 � 0; (7)

Since the �rst term on the left hand side of (7) can be rewritten as a point-wise maximum of linear

expressions, it is convex. The second term is linear. Therefore, the above expression is convex overjf j.
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