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Abstract

Sparsity is a fundamental concept in compressive samplirgignals/images, which is commonly
measured using th& norm, even though, in practice, the or the ', (0 < p < 1) (pseudo-) norm
is preferred. In this paper, we explore the use of @Giai index (Gl) of a discrete signal, as a more
effective measure of its sparsity for a signi cantly impeal performance in its reconstruction from
compressive samples. We also successfully incorporat&thato a stochastic optimization algorithm
for signal reconstruction from compressive samples andtithite our approach with both synthetic and

real signals/images.

. INTRODUCTION

In many applications, it is often desired to reconstruct scidite signal from a set of incomplete
observations in the spatial/time domain or in one of its gfarm domains. This is not possible in
general, unless we assume some constraints on the signadeoést in either of the two domains. In
many natural signals, it is indeed the case that there is#pan a spatial/time (or transform domain)
and the goal of many researchers is to exploit this spargignploying a smaller number (than normally
required) of samples, calletbmpressive samplem order to reconstruct the original signal.

In most of the current literature on compressive samplipgrsty is measured using thg norm of
a vector. If the original signal needsN samples for its complete speci cation in the spatial domain
but hasZ zeros in it, it is said to b& -sparse, wher® = N Z. Whenf has no nonzero elements
but hasZ elements which have magnitudes which are small, then we xd@nce: the above de nition to
“approximateK -sparsity”: if there exists & 2 RN which is K -sparse, andhf jj (ff )ijp is small,

where the subscrigt 1 denotes the, (pseudo-) norm, theh is approximatelyK -sparse.
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The desire to use onlyn N compressive samples to reconstruct the original signatjamleads
to the problem of solving an under-determined system ofalirejuations, which can be formulated as
follows: Letf be theK -sparse signal of interest and latdenote the sampling matrix of size N.

If y= Af are the compressive samples, the problem is then to re€ofrem y, assuming that we only
know that the signal of interest is sparse. Equivalently,nged to nd a vectog; which is an estimate

of f in the presence of noise, havifjgjj-, nonzero elements, as a solution to the following problem:

min igii, subject to jiAg i (1)
Solving the above minimization problem is known to be cormafiahally unwieldy in view of its
NP-hard nature. As a consequence, a majority of the litegabm compressive sampling (e.g. [1], [2])

propose an alternative convex minimization approach. It is hoped that, by minimizikgk-, we can
estimateg which is (approximately) equivalent to the estimategah (1). In fact, it has been shown that
under some conditions, these solutions are the same [1]. JT{Eseudo-) norm fo0 < p < 1; has been
recently proposed ( [3]-[5]) as a measure of sparsity whsch closer approximation of thg than the
"1 norm. The convergence, stability analyses and the conditimder which the original signal can be
recovered uniquely, are discussed in [6], [7].

As demonstrated in [8], and as shown by our experiments irffaf@ving sections, the ; norm and
"p (pseudo-) norm quantify sparsity in a way that runs courgeart intuitive understanding of sparsity.
As an alternative measure of sparsity, we show in this pdprthe Gini index (GI) not only overcomes
the limitations of standard norm-based sparsity meas@jelsut is also able to reconstruct signals from

compressive samples more accurately and ef ciently.

Il. SPARSITY AND ITS MEASURES

In signal representation, we can de peactical sparsity in many ways. For instance, a signal is sparse
if the number of the non-zero coef cients in its represeintais small compared to its dimension. But in
the case of real signals, this de nition may not be practiédternatively, a signal is sparse if ienergy
is concentrated in a small number of coef cients of its reygretation. As applied to an image, such a
sparsity is scale invariant, which means that multiplyitigttee coef cients of the image representation
by a constant does not affect its sparsity. Such a propettichwis indeed desirable in the context of
image reconstruction from sparse samples, is clearly s ea by "1 or ', as a sparsity measure. In
general, a sparsity measure should depend on the relasitréodtion of energy among the coef cients, as

a fraction of the total energy, and not be calculated baskllyson the absolute value of each coef cient.
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In fact, a good measure should be a weighted sum of coefsietsignal representation, based on
the importance of a particular coef cient in the overall sgiy. As a consequence, any slight change in
the value of a coef cient will affect sparsity only relatiie the weight of that coef cient, which is a
desirable property. More explicitly, large coef cientsahd have a smaller weight compared to the small
ones so that they do not in uence the sparsity measure in athatydoes not respond to the changes of
the smaller coef cients.

The authors of [8] examine and compare quantitatively, isdveommonly-used sparsity measures
based on intuitive and desirable attributes which they Ralbin Hood, Scaling, Rising Tide, Cloning,
Bill Gates andBabies Their nding is that only the Gini index (Gl), which is de reebelow, has all
these attributes.

Gini Index (GI): Given a vectorf =[f (1);::;f (N)]; with its elements re-ordered and represented by
f[k] fork=1;2; 'N; wherejf[l]j i f[z]j; D f[N]j; then

GI(f) = 1 X Ml N k+1=2 @)
s L, N

wherejjf jj1 is the "1 norm of f : We show in Appendix thaGl (f ) is a quasi-convexXunction injf j.

An important advantage of Gl over the conventional norm messis that it isnormalized and
assumes values between 0 and 1 for any vector. FurtherQitfas the least sparse signal with all the
coef cients having an equal amount of energy; a@ntbr the most sparse one which has all the energy
concentrated in just one coef cient. This gives us a meduingeasure, exhibiting the sparsity of the
distribution. Moreover, unlike other norm measures, thiieaof Gl is independent of the size of the
vector, thereby enabling us to compare the sparsity of veabdifferent sizes. As mentioned above, it
is also scale-invariant and independent of the total enefghe signal. As a consequence, it is ideally
suited for comparing the sparsity of a signal in differeahsform domains. When applied to the problem
of signal reconstruction from compressive samples, Glifat#s the discovery of the sparsest domain of
transform, if there is any. For example, consider the pharntoage (Fig. 5) of siz&12 512 The Gl of
this image in different transform domains is presented iold# from which we can easily conclude that
the phantom image is most sparse in the gradient domain astidparse in the DFT domain. Moreover,
with such a de nition, it turns out that there is no need to ke explicitly approximate sparsity measures:
when Gl is large (i.e., close to 1), then the signal has onlgva ¥alues which are dominant; and when
the Gl is small, the signal has very few dominant values. Rstaince, théy norm does not take into
account the energy distribution of the non-zero elementsis@er the two signalX ; = [10;1; 1;0] and

X2 =1[4;4,4,0]. Their sparsity according to thgy norm is the same. However, intuitively, the sparsity
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of X1 should be more thaX, since most of the signal energy is concentrated in just éeraent. For
other examples (of similar synthetic vectors) which den@its that Gl is more general and consistent
thanK sparsity, see [8].

The above observations serve as motivation for the use ofsG aparsity measure for signal re-
construction from sparse samples. However, it should bedhttat Gl, which is neither a norm nor,

~

even, apseudo-norm(like the ", for 0 < p < 1), has some undesirable characteristics, too. For
instance, the Gl of two signals cannot be algebraically maated to compute the GI of a composite
signal. Further, we cannot analyze the sparsity of a signaldcomposing it into smaller segments, and
computing the sparsity of each for summation later. Moreahere seems to be no mathematical results
that deal with conditions on the measurement maarifor recovering uniquely the original signals from
compressive samples when Gl is invoked as a sparsity meaBleeexisting constraints of null space
(NS) and restricted isometry properties (RIP)fofor unique reconstruction [9] df -sparse signals from
compressive samples anet applicable here. This is left as a challenging problem.

Based on the Gl as a sparsity measure, we can formulate tleepoalslem of reconstruction as follows:

Problem: Given the measuremerys nd a vector g (which is an estimate df), as a solution to the

following optimization problem:

rggx Gl (g) subject to Ag =: 3)
g2R™ B -

When the measurement is corrupted by noise, the signal sgcation problem can be formulated as
a corollary to the above.

Corollary: Given the measuremenys= Af + ; where is the noise vector, satisfying the inequality

ji iz 5 ndavectorg (which is an estimate df), as a solution to the following optimization problem:
max Gl (g) subject to jjAg i 4)
g2R™ B -
[1l. PROPOSEDAPPROACH

Our goal is to nd the sparsest solution, in the sense of Glomgnthe set of admissible signals. To
this end, we make use of tf{€imultaneous Perturbation Stochastic ApproximationP&A)[10] to nd
a solution to (3).

In the reconstruction of real images, any optimization atgm must be able to contend with the high
dimension of the problem and noisiness in the measureméthg @hosen objective function. SPSA has

been found to be ef cient for this purpose by providing a Saittory solution using a relatively small
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number of measurements of the objective function. SPSA absservations of the desired performance
function (which, in our application, is the Gl of the signaljthout a direct reference to its gradient.
It approximates the gradient using only two performancection observations per iteration, regardless
of the dimension of the signal. The two observations are ndsimultaneously varying randomly all
the variables in the performance function. This essengiature of the SPSA makes it a powerful and
relatively easy to use tool for dif cult multivariate optization problems.

Further, for global optimization in the face of multiple &optima, it has been established [11] that
the SPSA converges under fairly general conditions indggiiecewise differentiability of the objective

function and Lipschitz continuity of its gradient.

A. SPSA Algorithm

Assume thaf is the original sparse vector which is being measured usintaix A, andy is the
set of observationg; = Af . Let (_) be the function to be maximized over a vector of parameters,
In our application, is the GI of the admissible signals. It is assumed that measemts of (_) are
available at various values of The standard SPSA invokes the Lagrangian multiplier neetbanclude
constraints. In contrast, we employ a different strateggeal with constraints for both noise-less and
noisy measurements: in each iteration, we projeohto the set of feasible solutions.

In the case of measurements free from noise, let the settioat satisfy the observations be denoted
by O = f_: A_= yg. Then, withAY denoting the pseudo-inverse AfP (L) = (_ AY(A_ y))is
the nearest point to on O; or, in other wordsP(_) is the projection of onto setO.

Starting from the point 5, at each step, we simultaneously perturb all elements, adiccording to
a distribution vector () whose elements are usually (but not necessarily) gemetatea Bernoulli

distribution. We then evaluate(_, + _y) and (_x k_x), and update as follows:

(L * k_k)2 k (L« k—k)_kl (5)

k+1 =P x*+ «

where the gain sequencg := CEIRE and the small positive time-varying constagt:= (e The
inverse of , vector is de ned to be an element-wise inverse, hence foBtraoulli distribution_ 1= k-
The algorithm terminates when it converges to a solution lsemthe maximum number of iterations is
reached. In the case of measurements with noise, th® dscomesO = f_:jjA_ yji < g and

P() = argminkfljx _jj» sit: x20 g.
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B. Choice of SPSA parameters

Spall [12] provides general guidelines for choosing appede values for the parameters. Variables
and are recommended to be set to 0.602 and 0.101, respectibhelcanstanB to 10% (or less)
of the maximum number of expected iterations; and the paemeto the standard deviation of the

measurement noise. When the noise is smalk chosen as 0.01. It is recommended to chooseich

that the product o( (ot °—°2) - 0(—0 0—0)) is approximately equal to the smallest desired step sizeglur
the early iterations. Of all the SPSA parameters, selectimgquires the most effort, because it is often
dif cult to know ahead of time what a good initial step sizeosifd be. If the value of is chosen to be
too small, it can signi cantly increase the number of SPSations required to reach the minima, while
large values of lead to unstable, diverging solutions. However, it has t&ewn through experimental
evaluation that a wide range ofvalues will yield satisfactory results [13]. In the expeeints presented
here, is setto a value in the range, 100 - 150. Finally, the vegtds so chosen as to have a Bernoulli

distribution [14].

IV. EXPERIMENTAL RESULTS

In this section, we present experiments that evaluate tferpgance of Gl as a sparsity measure in
comparison with other conventional norm measures for 1Badgand 2D images. In all our experiments,
we minimized (a) the p-norm ( = 0:1) using the algorithm in [6]; and (b) thg-norm using NESTA
[15].

A. One-Dimensional Signals

We rst generate 100 random signals of sike= 1000 with K = 100, (i.e., 9® of the elements
are zero) and then usa samples (wheren is arbitrary) to measure the signals. For each choice of
m; we select randomly the entries of the sampling matride®f sizem N; from a mean-zero
Gaussian distribution. With the Gl as the sparsity measwee reconstruct the signals, and compare
the reconstructions with those obtained by employip@nd ", norms as the sparsity measures.

Figure 1 shows the success rate for perfect signal recovengus the number of measurements for
each sparsity measure. It is observed that our method dotpesrthe'; and™, approaches in recovering
the original signal.

In order to test the robustness of the Gl as a measure of gpaveiconducted two sets of experiments.
In the rst set, we performed the same experiment as discuabeve, except that this time the mea-

surements were corrupted with Gaussian noise (SNR=35).efhality constraints in all minimization
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Success rate (%)
2

250 300 350 400
Number of Samples (m)

Fig. 1. Perfect signal recovery as a function of the numbesaofples.

problems are changed to inequality constraints with a saaheevof (proportional to the standard
deviation of the noise). Figure 2 shows the mean square M8E) of the reconstructed signals versus
the number of measurements. It is seen that our Gl-basedothsigni cantly outperforms the; and

“p horm-based approaches in recovering the original signakraocurately. In the second test, we (i)
generate 100 random signals of size 1000 with 100 non-zeroegits; (i) make 350 measurements; and
corrupt them with different levels of noise; and (iii) pldtet MSE of the reconstructed signals versus
SNR of the noise. Again the value ofis the same for all methods. It is evident from Figure 3 that th
Gl-based method is superior to theand ", norm-based approaches, in general, and more signi cantly

when a high amount of noise is present.

1d°

\ \ | | | | N
200 220 240 260 280 300 320 340 360 380 400
Number of Samples (m)

Fig. 2. MSE of the reconstructed signal versus number of gsrtpken for noisy signals.

B. Two-Dimensional Signals

Figures 4 and 5(a) show the images used in our experimentg Wable | presents the Gl values

evaluated for these images in different representationadltsn From Table |, it is evident that the wavelet
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Fig. 3. MSE of the reconstructed signals vs. SNR of the noise.

domain is the sparsest for all chosen images except for taetpim image for which its gradient domain

is the sparsest. The Gl values in the table exhibit the extesparsity in the images more transparently

than what can be discovered with the help ¢f norm-based measures.

(a) Boat,512 512 (b) Man,512 512 (c) MRI, 512

Fig. 4. Original test images

512 (d) CT ,256 256 (e) Peppers256 256 (f) Hill, 512 512

Images/Domain|| Spatial| DCT DFT | Wavelets| Gradient

Boat 0.1922 | 0.6948 | 0.6508 | 0.8832 0.6282

Man 0.2450 | 0.6626 | 0.6099 | 0.8838 0.6099

MRI 0.5560 | 0.7132| 0.6736| 0.9389 0.8350

CT image 0.4534 | 0.8449| 0.6098 | 0.9155 0.8165
Peppers 0.2467 | 0.6996 | 0.6552| 0.8970 0.6771
Hill 0.2448 | 0.6570| 0.6150| 0.8781 0.6036
Phantom 0.6977 | 0.7600 | 0.5664 | 0.8887 0.9846

TABLE |

COMPARISON OF THEG| OF DIFFERENT TRANSFORM DOMAINS FOR THE TEST IMAGES
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(a) Original image (b) Sampling mask () "1 (d)y TV (e) "o [4] (fH Gl

Fig. 5. Comparison of1-, TV-, “o- and Gl-based reconstruction of the phantom image.

For the reconstruction of the MRI-phantom image of 256 256 we use the samples along only 9
radial lines (see Fig. 5(b)) in its Fourier domain, and mazerthe Gl of its gradient magnitude. From
Fig. 5, which also contains the results Qf and p-based [4] reconstructions, it can be seen that our
(Gl-based) method outperforms the others in reconstrgyictie image from only 9 radial lines.

When applying our algorithm to various images, we maximigesl Gl of the wavelet coef cients,
subject to random observations in the Fourier domain. Theselts were then compared with those
obtained byminimizing(a) Total Variation (TV)-norm, (b) 1, and (c) p;p = 0:1. In the case of noisy
measurements, the same value ofias been used for all algorithms. From Table I, which presen
the PSNR of the reconstructed images using these diffeqgmtoaches, it is clear that the Gl-based
reconstruction is superior to reconstruction using the Vand ", norm based minimizations for most
of the test images.

From Table Il, our method appears to be inferior to TV miniatian in terms of PSNR for the CT
and Pepper test images. However it is evident from Fig. 6ithages reconstructed using the Gl-based
method are perceptually better with less loss of detailsreldeer, TV minimization blurs the output,
thereby affecting the visual quality, which, in medical jes, may lead to loss of important minutiae,

such as small vessels.

V. CONCLUSIONS

For the reconstruction of signals/images from compressaraples, we have explored the use of the
Gini index (GI) as a sparsity measure. The Gl, is a more rigdiabd robust alternative to the currently
popular ", (pseudo-) norm-based (fod <p 1) sparsity measure [8]. Furthermore, our proposed GI-
based stochastic optimization method to reconstruct Egmad images has been shown to be superior

over other commonly used norm based minimization methods.inderesting challenge would be to
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Noise-less images H Noisy images
Input Data PSNR

Image name|| % of TV 1 p Gl Noisy image| TV 1 o Gl
Samples| min. min. | min. | max. min. min. | min. | max.
Boat 50% 31.77 | 32.23| 33.12| 34.71 25.36 26.92 | 24.91 | 27.06 | 29.81
Man 38% 30.35 | 30.55| 30.36 | 34.64 26.44 25.72 | 27.79 | 28.11| 29.01
MRI 27% 32.66 | 34.11| 39.27 | 42.98 27.11 30.42 | 28.01| 29.04 | 32.28
CT image 27% 36.07 | 33.61| 32.81 | 35.81 26.73 28.91| 26.12 | 27.43 | 29.10
Peppers 39% 3290 | 29.66 | 28.52 | 31.82 25.55 25.81| 23.64 | 26.09 | 25.83
Hill 39% 31.51| 25.52 | 30.90 | 33.12 26.12 27.82| 26.54 | 26.78 | 27.65

TABLE I

PSNROF THE RECONSTRUCTED IMAGES IN NOISE.LESS AND NOISY SETTINGS

establish the theoretical conditions under which exacomsetuction is possible with Gl as a signal

sparsity measure.
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APPENDIX

Gl, which has been de ned in (2), can also be expressed amafsil

P P e . .
iN=1 jN=1 T 1 Tyl .
2Njitjj,

Gl(f) = (6)

Proof: From (6), we have

P P . L . . . . . o .
Glif) = 20 N ifaid fgl 2 gt J el v+ 0t ) T Toen)
(b= ONGiF ], - ONGIF T,

Suppose thaf (a)j is thek th element in the sorted vector thifn(a)j = jf ). In the numeratojf (a)j

is compared with the otheN( 1) elements. It is clear that jf (a)] = jfyqj, then k 1) of f elements

are smaller thanf (a)j, while (N k) elements off are greater. Therefore, we have

X
faol T fel+ +ifwl it +  + 0t o) ) fnyl = (k Difpgl (N K)jf g

k=1
Then it follows that
o (h) = zpﬁlpﬁﬂﬂujﬁnjjfuﬂ _ 2PNk Difgi (N Kif o)
N 2Njif i, 2Njif i,
— 2P Ilzl:l (Kifpgd) 0 fiin Njifjja _ ijf_jjl +2 P Ezl (Kjf 1) i f_JJl 2ijf_”1
Njifij, Nif i,
L 2T it i i 2Nt

Niifii,
which is the same as (2).

To show thatGl (f ) is quasi-convex inf j, it is suf cient to show that the sub-level sets of Eqn. (6)

are convex sets [16]. Thesublevel set can be written as:

P P . . ..
AP T OTRRA(D)
— C;
2NJJf_JJ1
We can rewrite this as :
jF@iJ f3G)  2eNjfj, O (7)

i=1j=1
Since the rst term on the left hand side of (7) can be rewnitess a point-wise maximum of linear

expressions, it is convex. The second term is linear. Thezethe above expression is convex ojgr
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