Evening Lecture

Jointly Organised by
The Joint Branch of RINA & IMarEST
Society of Naval Architects and Marine Engineers Singapore
and
Centre for Offshore Research & Engineering (CORE), NUS

“Assessing Risk and Reliability for Large versus Many Small Projects”
By Prof. Peter Marshall, PE
Moonshine Hill Proprietary, Houston

Date: Friday, 19 January 2007

Time: 6.30pm to 7pm Registration & Refreshments
Talk begins at 7 p.m. and ends at 9 p.m.

Venue: Seminar Room LT1, Faculty of Engineering, National University of Singapore
(see attached map)

Please see the attached documents for the abstract of the talk and biography of the speaker.

Please confirm with Ms. Juliana by Friday 12 January 2007 via the reply slip.

A/Prof. Choo Yoo Sang
Chairman
The Joint Branch of the RINA and the IMarEST (Singapore)

REPLY SLIP - Fax No. 67791635; Tel No. 65162151; Ms Juliana Miswan, Email: cvejulia@nus.edu.sg

Yes, I would like to attend the talk

Name: ____________________________
Designation: ____________________________
Company: ____________________________
Address: ____________________________
Tel No.: _______ Fax: _______ E-Mail: ____________________________

(If you are a RINA/IMarEST Member and you have not provided your E-Mail Address before to the Singapore Joint Branch, please provide your E-Mail address now for enhanced communication)
“Assessing Risk and Reliability for Large versus Many Small Projects”
By Prof. Peter Marshall, PE
Moonshine Hill Proprietary, Houston

ABSTRACT

Cost-benefit analysis has been used to justify the construction of flood protection levees in terms of risk reduction. The 9th-19th and 21st editions of API RP 2A (Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms) based their selection of oceanographic criteria on cost-risk analysis. Acceptable human risks are set by society, and there are a number of precedents we can refer to. Post-Cullen safety studies in the North Sea use such concepts as ALARP (As Low As Reasonably Possible) and ICAF (Incremental Cost per Avoided Fatality). This paper will examine these precedents and the question of how well they hold up when the consequences of a single event are measured in billions of dollars.

ABOUT THE SPEAKER

Professor Peter Marshall holds Bachelor and Master of Science degrees from the University of Florida, and a PhD (Dept. of Architecture) from Kumamoto University, Japan. He received the Alfred Noble Prize for a 1967 paper on "Risk Evaluations for Offshore Structures", and served for several years on the NRC Committee on Marine Structures. He worked with Shell Oil for 31 years, and retired as their top ranked Civil Engineer, specializing in the design of offshore structures. In this capacity, his design work and criteria development helped improve the reliability of fixed offshore platforms and enabled their expansion into challenging environments, holding five successive world water depth records. He led the initial design team for "Bullwinkle," the present world record fixed platform (1350-ft water depth), and managed interdisciplinary research, technology development, conceptual studies, and initial designs for a wide range of compliant towers, TLPs, and spars. He was twice chairman of the ASCE Committee on Tubular Structures, and a principal author of many of the related AWS and API design Code provisions.
Upon retiring from Shell in 1993, Marshall became Professor, Chair of Marine Design and Construction, University of Newcastle-upon-Tyne, England, teaching both undergraduate and graduate courses. He is currently sole proprietor, MHP Systems Engineering, a specialist consultant to offshore design firms and oil companies, as such participating in all of Shell’s TLPs, as well as the Hess Baldpate compliant tower project. His work on tubular and offshore standards continues internationally. In 2006, he received the OTC Distinguished Achievement Award for Individuals, and was Kurobane Lecturer at ISTS-11.