A New Risk Definition for Uncertain Portfolio Selection

Xiaoxia Huang

School of Economics and Management University of Science & Technology Beijing hxiaoxia@manage.ustb.edu.cn

What is portfolio selection?

To determine capital allocation proportions among securities.

How to represent a return?

1933: Kolmogroff: Random Variable

1965: Zadeh: Fuzzy Variable

2007: Liu: Uncertain Variable

Return is fuzzy?

Membership function of return

What is risk for uncertain portfolio investment?

Variance?

Consider returns of two portfolios A and B:

A: (0,1) with mean 0.5.

B: (100,101) with mean 100.5.

Do you think portfolio A is as same risky as portfolio B?

What is risk curve?

Loss:
$$0 - (x_1 \xi_1 + x_2 \xi_2 + \dots + x_n \xi_n) \ge 0$$
,

Loss:
$$r_f - (x_1 \xi_1 + x_2 \xi_2 + \dots + x_n \xi_n) \ge 0$$
,

Risk curve:
$$R(r) = M\{r_f - (x_1\xi_1 + x_2\xi_2 + \dots + x_n\xi_n) \ge r\}, \forall r \ge 0.$$

Intuitive; Panoramic!

Risk curve:

Risk curve and safe portfolio

A portfolio is safe if $R(x_1, x_2, \dots, x_n; r) \le \alpha(x_1, x_2, \dots, x_n; r)$.

Mean-Risk Model for Random Portfolio Selection (Huang, EJOR, 2008)

$$\begin{cases} \max E[x_{1}\xi_{1} + x_{2}\xi_{2} + \dots + x_{n}\xi_{n}] \\ \text{subject to:} \\ \Pr\{r_{f} - (x_{1}\xi_{1} + x_{2}\xi_{2} + \dots + x_{n}\xi_{n}) \geq r\} \leq \alpha(r), \ \forall r \geq 0 \\ x_{1} + x_{2} + \dots + x_{n} = 1 \\ x_{i} \geq 0, \ i = 1, 2, \dots, n. \end{cases}$$

Mean-Risk Model for Uncertain Portfolio Selection

$$\begin{cases} \max E[x_{1}\xi_{1} + x_{2}\xi_{2} + \dots + x_{n}\xi_{n}] \\ \text{subject to:} \\ M\{r_{f} - (x_{1}\xi_{1} + x_{2}\xi_{2} + \dots + x_{n}\xi_{n}) \ge r\} \le \alpha(r), \forall r \ge 0 \\ x_{1} + x_{2} + \dots + x_{n} = 1 \\ x_{i} \ge 0, i = 1, 2, \dots, n \end{cases}$$

where *M* is the uncertain measure which satisfies the normality, monotonicity, self-duality and countable subaditivity axioms.

The idea of *risk curve* is also applicable to structural reliability and other areas.

