Primary and Derived Variables with the Same Accuracy in Interval Finite Elements

M. V. Rama Rao¹, Robert L. Mullen², and Rafi L. Muhanna³

¹Vasavi College of Engineering, Hyderabad-500 031 INDIA, dr.mvrr@gmail.com

² University of South Carolina, Columbia, SC 29208, USA,

rlm @cec.sc.edu

³ Georgia Institute of Technology, Atlanta 31407, USA, rafi.muhanna@gtsav.gatech.edu

REC2010

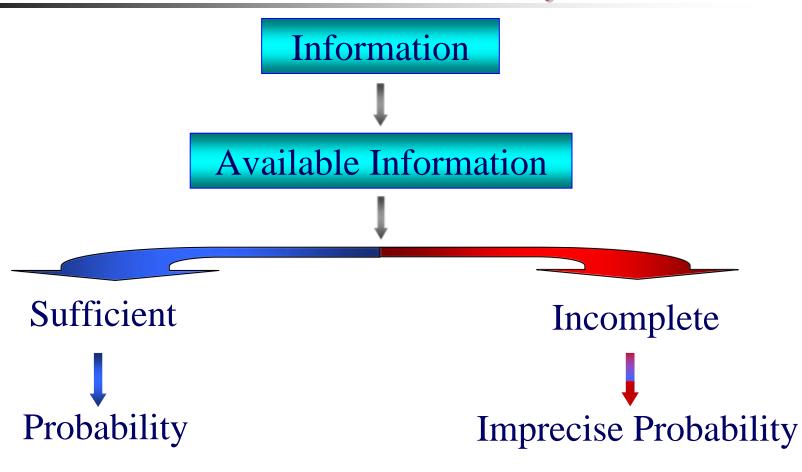
National University of Singapore, March 3-5, 2010

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Overestimation in IFEM
- New Formulation
- Examples
- Conclusions

- □ Uncertainty is unavoidable in engineering system
 - □ Structural mechanics entails uncertainties in material, geometry and load parameters (aleatory-epistemic)
- □ Probabilistic approach is the traditional approach
 - □ Requires sufficient information to validate the probabilistic model
 - □ What if data is insufficient to justify a distribution?

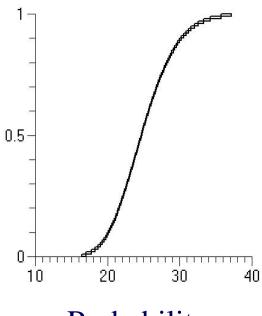
Introduction-Uncertainty



$\left\{ \left\| \right\| \right\}$

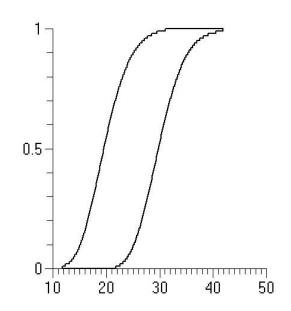
Introduction- Uncertainty

Lognormal



Probability

Lognormal with interval mean



Imprecise Probability

Tucker, W. T. and Ferson, S., Probability bounds analysis in environmental risk assessments, Applied Biomathematics, 2003. Mean = [20, 30], Standard deviation = 4, truncated at 0.5th and 99.5th.

Int

Introduction-Interval Approach

□ Only range of information (tolerance) is available

$$t = t_0 \pm \delta$$

□ Represents an uncertain quantity by giving a range of possible values

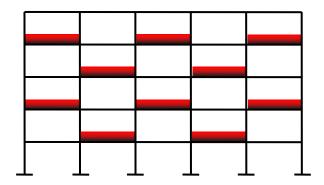
$$t = [t_0 - \delta, \ t_0 + \delta]$$

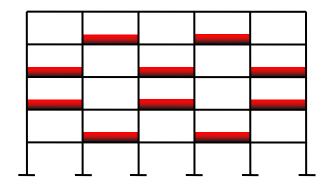
- □ How to define bounds on the possible ranges of uncertainty?
 - experimental data, measurements, statistical analysis,
 expert knowledge

- □ Simple and elegant
- □ Conforms to practical tolerance concept
- □ Describes the uncertainty that can not be appropriately modeled by probabilistic approach
- □ Computational basis for other uncertainty approaches (e.g., fuzzy set, random set, imprecise probability)
- **☐** Provides guaranteed enclosures

Examples — Load Uncertainty

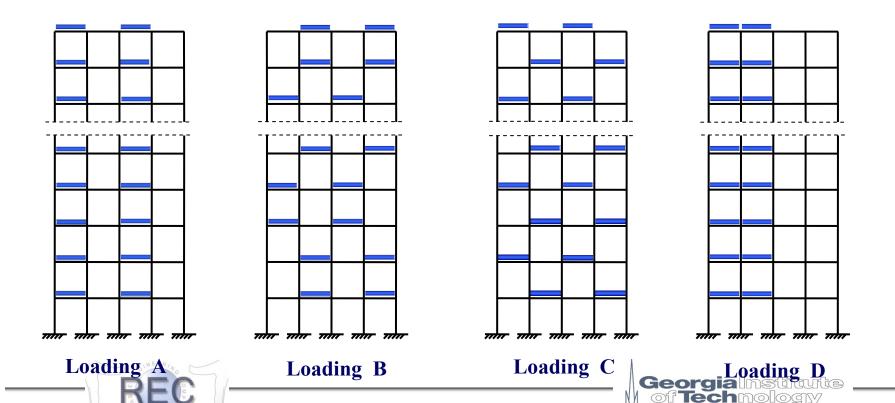
Four-bay forty-story frame





Examples — Load Uncertainty

> Four-bay forty-story frame



Examples — Load Uncertainty

> Four-bay forty-story frame

Total number of floor load patterns

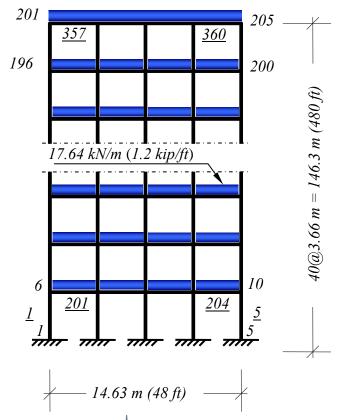
$$2^{160} = 1.46 \times 10^{48}$$

If one were able to calculate

10,000 *patterns / s*

there has not been sufficient time since the creation of the universe (4-8) billion years? to solve all load patterns for this simple structure

Material *A36*, Beams *W24* x *55*, Columns *W14* x *398*



Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Overestimation in IFEM
- New Formulation
- Examples
- Conclusions

Interval arithmetic

■ Interval number represents a range of possible values within a closed set

$$x = [x, \overline{x}] := \{x \in R \mid x \le x \le \overline{x}\}$$

Properties of Interval Arithmetic

Let x, y and z be interval numbers

1. Commutative Law

$$x + y = y + x$$
$$xy = yx$$

2. Associative Law

$$x + (y + z) = (x + y) + z$$
$$x(yz) = (xy)z$$

3. Distributive Law does not always hold, but

$$x(y+z) \subseteq xy + xz$$

Sharp Results – Overestimation

■ The *DEPENDENCY* problem arises when one or several variables occur more than once in an interval expression

$$F(x) = x - x$$
, $x = [1, 2]$

$$f(x) = [1-2, 2-1] = [-1, 1] \neq 0$$

$$F(x, y) = \{ f(x, y) = x - y | x \in x, y \in y \}$$

$$f(x) = x (1-1) \qquad \Longrightarrow \qquad f(x) = 0$$

$$f(x) = \{ f(x) = x - x \mid x \in x \}$$

Sharp Results — Overestimation

■ Let *a*, *b*, *c* and *d* be independent variables, each with interval [1, 3]

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} \mathbf{a} & -\mathbf{b} \\ -\mathbf{c} & \mathbf{d} \end{pmatrix}, \qquad A \times \mathbf{B} = \begin{pmatrix} [-2, 2] & [-2, 2] \\ [-2, 2] & [-2, 2] \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad \mathbf{B}_{phys} = \begin{pmatrix} \mathbf{b} & -\mathbf{b} \\ -\mathbf{b} & \mathbf{b} \end{pmatrix}, \qquad A \times \mathbf{B}_{phys} = \begin{pmatrix} [\mathbf{b} - \mathbf{b}] & [\mathbf{b} - \mathbf{b}] \\ [\mathbf{b} - \mathbf{b}] & [\mathbf{b} - \mathbf{b}] \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \qquad B_{phys}^* = \boldsymbol{b} \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \qquad A \times \boldsymbol{B}_{phys}^* = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

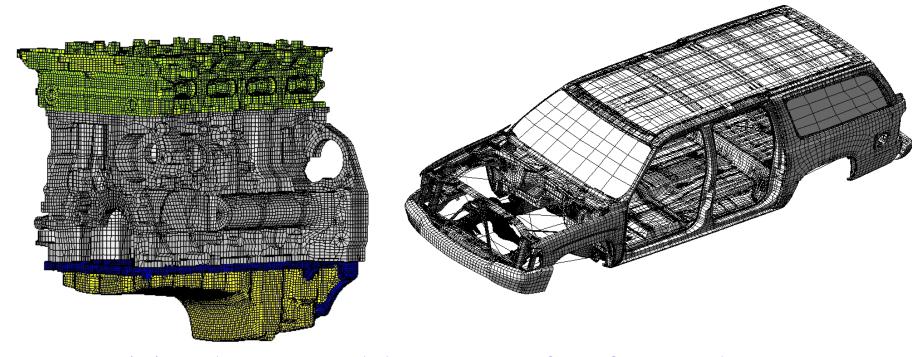
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Overestimation in IFEM
- New Formulation
- Examples
- Conclusions

Finite Elements

Finite Element Methods (FEM) are numerical method that provide approximate solutions to differential equations (ODE and PDE)

Finite Elements



Finite Element Model (courtesy of Prof. Mourelatous) 500,000-1,000,000 equations

Finite Elements- Uncertainty & Errors

- □ Mathematical model (validation)
- □ Discretization of the mathematical model into a computational framework (verification)
- □ Parameter uncertainty (loading, material properties)
- □ Rounding errors

Interval Finite Elements (IFEM)

- □ Follows conventional FEM
- □ Loads, geometry and material property are expressed as interval quantities
- □ System response is a function of the interval variables and therefore varies in an interval
- □ Computing the exact response range is proven NP-hard
- □ The problem is to estimate the bounds on the unknown exact response range based on the bounds of the parameters

FEM- Inner-Bound Methods

- □ Combinatorial method (Muhanna and Mullen 1995, Rao and Berke 1997)
- □ Sensitivity analysis method (Pownuk 2004)
- □ Perturbation (Mc William 2000)
- Monte Carlo sampling method
- □ Need for alternative methods that achieve
 - □ Rigorousness guaranteed enclosure
 - □ Accuracy sharp enclosure
 - □ Scalability large scale problem
 - □ Efficiency

IFEM- Enclosure

- □ Linear static finite element
 - □ Muhanna, Mullen, 1995, 1999, 2001, and Zhang 2004
 - □ Popova 2003, and Kramer 2004
 - □ Neumaier and Pownuk 2004
 - □ Corliss, Foley, and Kearfott 2004
- □ Heat Conduction
 - □ Pereira and Muhanna 2004
- Dynamic
 - □ Dessombz, 2000
- □ Free vibration-Buckling
 - □ Modares, Mullen 2004, and Bellini and Muhanna 2005

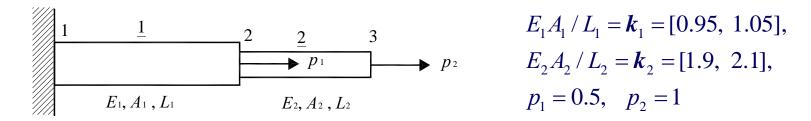
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Overestimation in IFEM
- New Formulation
- Examples
- Conclusions

Overestimation in IFEM

- Multiple occurrences element level
- Coupling assemblage process
- Transformations local to global and back
- Solvers tightest enclosure
- Derived quantities function of primary

Naïve interval FEA



$$\begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \Rightarrow \begin{pmatrix} [2.85, \ 3.15] & [-2.1, \ -1.9] \\ [-2.1, \ -1.9] & [1.9, \ 2.1] \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}$$

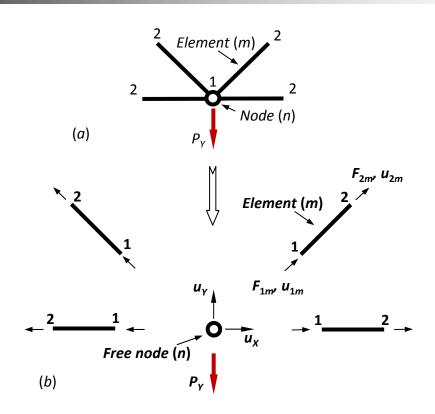
- exact solution: $u_2 = [1.429, 1.579], u_3 = [1.905, 2.105]$
- naïve solution: $u_2 = [-0.052, 3.052], u_3 = [0.098, 3.902]$
- interval arithmetic assumes that all coefficients are independent
- uncertainty in the response is severely overestimated (2000%)

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Overestimation in IFEM
- New Formulation
- Examples
- Conclusions

1

New Formulation



A typical node of a truss problem. (a) Conventional formulation. (b) Present formulation.

New Formulation

Lagrange Multiplier Method

A method in which the minimum of a functional such as

$$I(u,v) = \int_a^b F(x,u,u',v,v') dx$$

with the linear equality constraints

$$G(u, u', v, v') = 0$$

is determined

New Formulation

Lagrange Multiplier Method

The Lagrange's method can be viewed as one of determining u, v and λ by setting the first variation of the *modified* functional

$$L(u,v,\lambda) \equiv I(u,v) + \int_a^b \lambda G(u,u',v,v') dx = \int_a^b (F + \lambda G) dx$$

to zero

1

New Formulation

Lagrange Multiplier Method

The result is Euler Equations of the $L(u,v,\lambda) \equiv \int_a^b (F+\lambda G)dx$

$$\frac{\partial}{\partial u}(F + \lambda G) - \frac{d}{dx} \left[\frac{\partial}{\partial u'}(F + \lambda G) \right] = 0$$

$$\frac{\partial}{\partial v}(F + \lambda G) - \frac{d}{dx} \left[\frac{\partial}{\partial v'}(F + \lambda G) \right] = 0$$

$$G(u, u', v, v') = 0$$

from which the dependent variables u, v, and λ can be determined at the same time

\blacksquare

New Formulation

In steady-state analysis, the variational formulation for a discrete structural model within the context of Finite Element Method (FEM) is given in the following form of the total potential energy functional when subjected to the constraints CU = V

$$\Pi^* = \frac{1}{2}U^T K U - U^T P + \lambda^T (CU - V)$$

New Formulation

Invoking the stationarity of Π^* , that is $\delta\Pi^*=0$, we obtain

$$\begin{pmatrix} K & C^T \\ C & 0 \end{pmatrix} \begin{pmatrix} U \\ \lambda \end{pmatrix} = \begin{pmatrix} p \\ V \end{pmatrix}$$

In order to force unknowns associated with coincident nodes to have identical values, the constraint equation CU=V takes the form CU=0, and the above system will have the following form

New Formulation

$$\begin{pmatrix} \mathbf{k} & C^T \\ C & 0 \end{pmatrix} \begin{pmatrix} \mathbf{U} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \mathbf{p} \\ 0 \end{pmatrix}$$

or

$$KU = P$$

where

1

New Formulation

$$\mathbf{k}_i = \frac{\mathbf{E}_i \mathbf{A}_i}{L_i}$$

New Formulation

$$\mathbf{u}_{1i} + \mathbf{u}_{jX} cos \varphi_i + \mathbf{u}_{jY} sin \varphi_i = 0$$

$$C^{\mathsf{T}} = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & 1 & \cdots \\ \vdots & \vdots & \cdots \\ 0 & 0 & \cdots \\ 0 & 0 & \cdots \\ \cos \varphi_1 & 0 & \cdots \\ \sin \varphi_1 & 0 & \cdots \\ \vdots & \vdots & \cdots \\ 0 & \cos \varphi_1 & \cdots \\ 0 & \sin \varphi_1 & \cdots \end{pmatrix}$$

$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_{11} \\ \mathbf{u}_{21} \\ \vdots \\ \mathbf{u}_{1n} \\ \mathbf{u}_{2n} \\ \mathbf{u}_{1X} \\ \mathbf{u}_{1Y} \\ \vdots \\ \mathbf{u}_{mX} \\ \mathbf{u}_{mY} \end{pmatrix}$$

$$\lambda = \begin{pmatrix} \lambda_{11} \\ \lambda_{21} \\ \vdots \\ \lambda_{1n} \\ \lambda_{2n} \end{pmatrix}$$
 $\mathbf{p} =$

 \mathbf{p}_{1X}

 \mathbf{p}_{1Y}

||||

New Formulation

■ Iterative Enclosure (Neumaier 2007)

$$(K + B \mathbf{D} A)\mathbf{u} = a + F \mathbf{b}$$

$$\mathbf{v} = \{ACa\} + (ACF)\mathbf{b} + (ACB)\mathbf{d}\} \cap \mathbf{v}, \quad \mathbf{d} = \{(D_0 - \mathbf{D})\mathbf{v} \cap \mathbf{d}\}$$

$$\mathbf{u} = (Ca) + (CF)\mathbf{b} + (CB)\mathbf{d}$$

where

$$C := (K + BD_0A)^{-1}$$

$$\mathbf{u} = Ca + CF\mathbf{b} + CB\mathbf{d}$$

$$\mathbf{v} = ACa + ACF\mathbf{b} + ACB\mathbf{d}$$

$$\mathbf{d} = (D_0 - \mathbf{D})\mathbf{v}$$

Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Overestimation in IFEM
- New Formulation
- Examples
- Conclusions

$$Width \ error\% = \left(\frac{computed \ enclosure \ width}{exact \ enclosure \ width} - 1\right) \times 100$$

Bound error% =
$$\left(\frac{computed\ bound - exact\ bound}{exact\ bound}\right) \times 100$$

■ Eleven bar truss

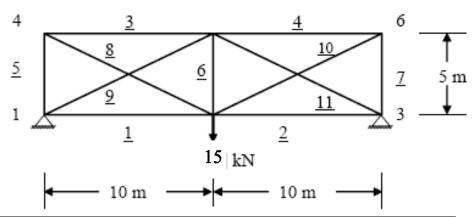
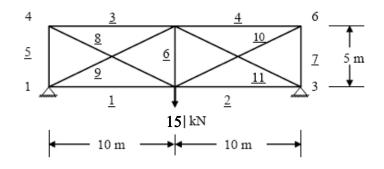


Table 2 Eleven bar truss -displacements for 12% uncertainty in the modulus of elasticity (E)								
	V ₂ ×10 ⁻⁵		U ₄ ×10 ⁻⁵		V ₄ ×10 ⁻⁵			
	Lower	Upper	Lower	Upper	Lower	Upper		
Combinatorial approach	-15.903532	-14.103133	2.490376	3.451843	-0.843182	-0.650879		
Krawczyk FPI								
Neumaier's approach	-15.930764	-13.967877	2.431895	3.4943960	-0.848475	-0.633096		
Error %(width)	9.02		10.50		11.99			
Present approach	-15.930764	-13.967877	2.431895	3.494396	-0.848475	-0.633096		
Error %(width)	9.02		10.50		11.99			

Error in bounds%= 0.17 %

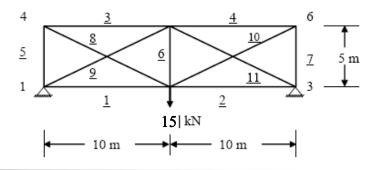


■ Eleven bar truss

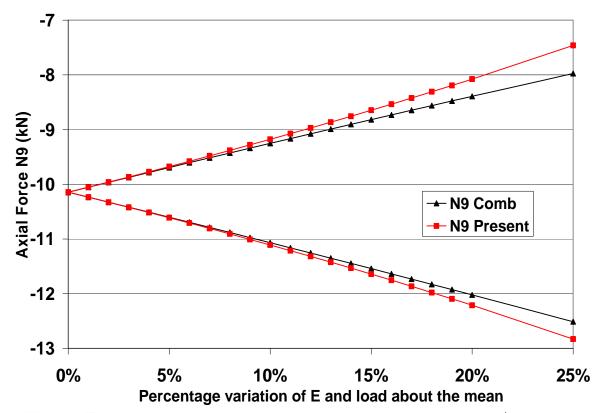
Table 4 Eleven bar truss - comparison of axial forces for 10% uncertainty in the modulus of elasticity (E) for various approaches

	$N_3(kN)$	$\overline{N}_{_{3}}(kN)$	$N_{9}(kN)$	$\overline{N}_{9}(kN)$	
Combinatorial approach	-6.28858	-5.57152	-10.54135	-9.73966	
Simple enclosure $\mathbf{z_1}(\mathbf{u})$	-7.89043	-3.96214	-11.89702	-8.39240	
Error %(width)	447	7.83	337.15		
Intersection $\mathbf{z}_2(\mathbf{u})$	-6.82238	-5.08732	-11.32576	-9.02784	
Error %(width)	141	186.63		186.63	
Present approach	-6.31656	-5.53601	-10.58105	-9.70837	
Error %(width)	8.85		8.85		

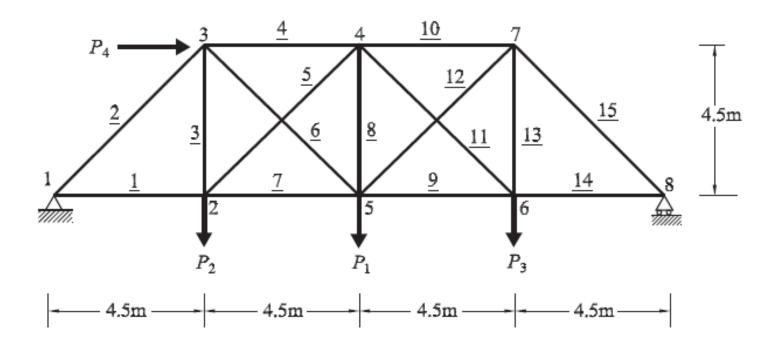
Error in bounds%= 0.45 %

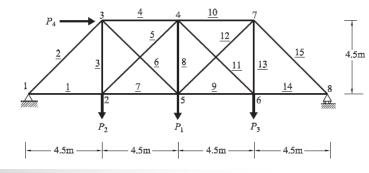


■ Eleven bar truss – Bounds on axial forces



■ Fifteen bar truss – Bounds on axial forces





■ Fifteen bar truss – Bounds on axial forces

Table 12 Forces (kN) in elements of fifteen element truss for 10% uncertainty in modulus of elasticity (E) and load								
Element	Combinatorial approach		Neumaier's approach		%Error	Present approach		%Error in
	LB	UB	LB	UB	in width	LB	UB	width
1	254.125	280.875	227.375	310.440	210.53	254.125	280.875	0.000
2	-266.756	-235.289	-294.835	-210.187	169.01	-266.756	-235.289	0.000
3	108.385	134.257	95.920	148.174	101.97	107.098	134.987	7.797
4	-346.267	-302.194	-379.167	-272.461	142.12	-347.003	-300.909	4.585
5	-43.854	-16.275	-48.143	-12.985	27.48	-44.975	-14.543	10.344
14	211.375	233.625	189.125	258.217	210.53	211.375	233.625	0.000
15	-330.395	-298.929	-365.174	-267.463	210.53	-330.395	-298.929	0.000

Conclusions

- Development and implementation of IFEM
 - uncertain material, geometry and load parameters are described by interval variables
 - interval arithmetic is used to guarantee an enclosure of response
- Derived quantities obtained at the same accuracy of the primary ones
- The method is generally applicable to linear static FEM, regardless of element type
- IFEM forms a basis for generalized models of uncertainty in engineering

