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Introduction- Uncertainty

0 Uncertainty is unavoidable in engineering system

o Structural mechanics entails uncertainties in material,
geometry and load parameters (aleatory-epistemic)

0 Probabilistic approach is the traditional approach

o Requires sufficient information to validate the
probabilistic model

o What If data Is insufficient to justify a distribution?
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uncertainties is unavoidable in engineering. For example, the required geometrical, material and loading data for structural analysis are characterized by uncertainties.

As consequence, the response of the structure will always exhibit

some degree of uncertainty. 

More reliable analysis and design can be achieved when uncertainty is accounted for.
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Introduction- Uncertainty

Lognormal Lognormal with interval mean
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Tucker, W. T. and Ferson, S. , Probability bounds analysis in environmental risk assessments,
Applied Biomathematics, 2003. Mean = [20, 30], Standard deviation = 4, truncated at 0.5" and 99.5%,
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some degree of uncertainty. 
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Introduction- Interval Approach

a Only range of information (tolerance) is available
t=t,t0

0 Represents an uncertain guantity by giving a range of possible

values t=[t,-0, t,+9]

a How to define bounds on the possible ranges of uncertainty?

o experimental data, measurements, statistical analysis,
expert knowledge
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In interval approach, uncertainty is assumed to be “unknown but bounded” and it has lower and upper bounds without assigning a probability structure. 

Interval approach is most valuable when dealing with uncertainties with only range information.


Introduction- Why Interval?

o Simple and elegant
0 Conforms to practical tolerance concept

0 Describes the uncertainty that can not be appropriately
modeled by probabilistic approach

0 Computational basis for other uncertainty approaches
(e.g., fuzzy set, random set, imprecise probability)

[ Provides guaranteed enclosures

o C Georgialnstituie
of Technologyy

=


Presenter
Presentation Notes
The advantage of interval approach is that it is mathematically simple, and it requires less computation than the standard probabilistic approach such as Monte Carlo method.

There is no additional distribution assumption needed to model uncertainty.

Another motivation to use…




Examples — Load Uncertainty

m Four-bay forty-story frame
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Examples — Load Uncertainty

> Four-bay forty-story frame
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Examples — Load Uncertainty

> Four-bay forty-story frame

Total number of floor load patterns

2160 = 1,46 x 108

If one were able to calculate
10,000 patterns /s

there has not been sufficient time since
the creation of the universe (4-8 ) billion
years ? to solve all load patterns for this
simple structure

Material 436, Beams W24 x 55,
Columns Wi4 x 398

201

205 Hr

—~

Jﬁ 14.63m (48f) —
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Interval arithmetic

m [nterval number represents a range of possible
values within a closed set

X=[x,x]={xeR|x<x<Xx}
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Properties of Interval Arithmetic

Let X, y and z be interval numbers
1. Commutative Law

X+y=y+X

Xy = yX
2. Associative Law
X+(y+7)=(X+y)+zZ

X(yz) = (Xy)z

3. Distributive Law does not always hold, but
X(y+2) = xy +xz
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Sharp Results — Overestimation

m The DEPENDENCY problem arises when one or
several variables occur more than once in an
Interval expression

» f(X)=X—=X, x = [1, 2]
> f(X)=[1-2,2-1]=[-1,1]=#0
> (X, y)= : EX,VEYVY}

> f(X)=x(1-1) = [f(xX)=0
> f(X)={/f(x)=x—x]|xe X}
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Sharp Results — Overestimation

m Leta, b, candd be independent variables, each with
Interval [1, 3]

[1 1j (a —bj ([—2,2] [—2,2])

A: ) B: y AXB:

1 1 ¢ d [-2,2] [-2,2]

A:(l 1} B :[b —b]’ AxB. :([b—b] [b—b]j
11 s T b s | o—b] [o—b]

11 \ 1 -1 X 0 O
A= 1 1) B, =bx 1) AxB,, = 0 0
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Finite Elements

Finite Element Methods (FEM) are
numerical method that provide
approximate solutions to differential
equations (ODE and PDE)
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The advantage of interval approach is that it is mathematically simple, and it requires less computation than the standard probabilistic approach such as Monte Carlo method.

There is no additional distribution assumption needed to model uncertainty.

Another motivation to use…
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500,000-1,000,000 equations

Finite Element Model (courtesy of Prof. Mourelatous)
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Finite Elements- Uncertainty& Errors

o Mathematical model (validation)

a Discretization of the mathematical model
Into a computational framework
(verification)

0 Parameter uncertainty (loading, material
properties)

0o Rounding errors
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Interval Finite Elements (IFEM)

a Follows conventional FEM

0 Loads, geometry and material property are expressed as
Interval quantities

o System response is a function of the interval variables
and therefore varies in an interval

o Computing the exact response range is proven NP-hard

a The problem is to estimate the bounds on the unknown
exact response range based on the bounds of the
parameters

—_— R C Georgialnstfituite
o Technholeogry

=



FEM - Inner-Bound Methods

0 Combinatorial method (Muhanna and Mullen 1995,
Rao and Berke 1997)

a Sensitivity analysis method (Pownuk 2004)
0 Perturbation (Mc William 2000)
a Monte Carlo sampling method

0 Need for alternative methods that achieve
0 Rigorousness — guaranteed enclosure
a Accuracy — sharp enclosure
a Scalability — large scale problem
a Efficiency
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In interval approach, uncertainty is assumed to be “unknown but bounded” and it has lower and upper bounds without assigning a probability structure. 

Interval approach is most valuable when dealing with uncertainties with only range information.


IFEM- Enclosure

QO Linear static finite element
a Muhanna, Mullen, 1995, 1999, 2001,and Zhang 2004
0 Popova 2003, and Kramer 2004
0 Neumaier and Pownuk 2004
o Corliss, Foley, and Kearfott 2004
0 Heat Conduction
o Pereira and Muhanna 2004
a Dynamic
0 Dessombz, 2000
a Free vibration-Buckling
0 Modares, Mullen 2004, and Bellini and Muhanna 2005
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Overestimation in IFEM

m Multiple occurrences — element level

m Coupling — assemblage process

m Transformations — local to global and back
m Solvers — tightest enclosure

m Derived quantities — function of primary
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Na'l've interval FEA

1 1

EA L =k, =[0.95, 1.05],
HE E,A, L, =k, =[19, 2.1],

Eq, A1, La E- A2, L pl = 05, p2 = 1

kil o \(w)_(p)_ ([285 315 [-21 -19])(u)_(05
—k, k, \u,) \p,) \[-21 -1.9] [19 21 Nu,) (1
m exact solution: u,=[1.429, 1.579], u, = [1.905, 2.105]

m naive solution: u, = [—0.052, 3.052], u;=[0.098, 3.902]

m Iinterval arithmetic assumes that all coefficients are
Independent

m uncertainty in the response Is severely ov&restimated (2000%)
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New Formulation

2

2 Element (m)
NS
2 2

(a) py‘
Fom Uzm
N2 ﬂ Element (m) 2~
N
\1 1 /

N o
Uyt Fim Uim
ad u,

Free node (n)
(b) P, ‘

A typical node of a truss problem. (a) Conventional formulation. (b) Present formulation.

C Georgialnsttituite
of Technologyy

=


Presenter
Presentation Notes
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New Formulation

m Lagrange Multiplier Method

A method in which the minimum of a functional
such as

b \ .
I (u,v) :J- F(x,u,u,v,v)dx
with the linear equality constraints

G(u,u',v,v') =0

IS determined
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New Formulation

m Lagrange Multiplier Method

The Lagrange’s method can be viewed as one of
determining u, v and A by setting the first variation
of the modified functional

L(u,v,\)=1(u,v)+ Lka(u,u',v, v )dx = Lb (F +AG)dx

to zero
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New Formulation

m Lagrange Multiplier Method
The result is Euler Equations of the L(u.v.0)=[ (F+1G)dx

Q(F‘F;\,G)—i i.(F+7»G)}:O
ou ou

dx

4

0 d| 0 B
E(FJJG)—— ?(F+}LG):|—

dx | Ov
G(u,u',v,v') =0
from which the dependent variables u, v,’and A can be
determined at the same time
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New Formulation

In steady-state analysis, the variational formulation for
a discrete structural model within the context of Finite

Element Method (FEM) is given in the following form
of the total potential energy functional when subjected

to the constraints cu =v

T =%UTKU—UTP+>€(CU—V)

|"l (=
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New Formulation

Invoking the stationarity of IT7, that is 8IT°= 0, we

" EEH

In order to force unknowns associated with coincident
nodes to have identical values, the constraint equation
CU=V takes the form CU = 0, and the above system

will have the following form
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New Formulation

or

where
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New Formulation
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New Formulation

u; +ucos, +u,sing, =0

cos @,

sin @,

0
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New Formulation

m |terative Enclosure (Neumaier 2007)
(K+BD Au=a+Fb
v={ACa)+(ACF)b+(ACB)d}nv, d={(D,-D)vnd
u=(Ca)+(CF)b+(CB)d
where
C:=(K+BD,A)™
u=Ca+CFb+ CBd

v=ACa+ ACFb+ ACBd
d=(D,-D)v
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Numerical example

computed enclosure width

B Width error% = ( — 1) x100

exact enclosure width

computed bound — exact bound

B Bound error% = ( j x 100

exact bound
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Numerical example

m Eleven bar truss

4 3 4 ]
8 10 _T_
2 = 7 Sm
1 - L 3 l
AN 1 1 2 as

).7 10m

15 kN

"

10m *“

Table 2 Eleven bar truss -displacements for 12% uncertainty in the modulus of elasticity (E)

V,x10° U,x10° V,x10°
Lower Upper Lower Upper Lower Upper

Combinatorial approach -15.903532 | -14.103133 | 2.490376 | 3.451843 | -0.843182 | -0.650879
Krawczyk FPI
Neumaier’s approach -15.930764 | -13.967877 | 2.431895 | 3.4943960 | -0.848475 | -0.633096
Error %(width) 9.02 10.50 11.99

Present approach -15.930764 | -13.967877 | 2.431895 | 3.494396 | -0.848475 | -0.633096
Error %(width) 9.02 10.50 11.99

Error in bounds%= 0.17 %
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Numerical example

m Eleven bar truss

4=

(=2

—

|-

Table 4 Eleven bar truss - comparison of axial forces for 10% uncertainty in the modulus of

elasticity (E) for various approaches

N,(kN) | N,(kN) | N,(kN) N, (kN)
Combinatorial approach -6.28858 | -5.57152 | -10.54135 -9.73966
Simple enclosure z,(u) -7.89043 | -3.96214 | -11.89702 -8.39240
Error %(width) 447.83 337.15
Intersection z,(u) -6.82238 | -5.08732 | -11.32576 -9.02784
Error %(width) 141.97 186.63
Present approach -6.31656 | -5.53601 | -10.58105 -9.70837
Error %(width) 8.85 8.85
Error in bounds%= 0.45 %
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Numerical example < —— o —

m Eleven bar truss — Bounds on axial forces
-7

-8 -

1
O
\

(Y
(@)
!

—+— N9 Comb
-=- N9 Present

=
-
|

Axlial Force N9 (kN)

1
(BN
N

\

AR
w

0% 5% 10% 15% 20% 25%
Percentage variation of E and load about the mean
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Numerical example

m Fifteen bar truss — Bounds on axial forces

‘—— 4.5m 4.5m 4.5m | 45m—-
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Numerical example

m Fifteen bar truss — Bounds on axial forces

|-— 4.5m

4.5m

I 4.5m

Table 12 Forces (kN) in elements of fifteen element truss for 10% uncertainty in modulus of elasticity (E) and load

Element Combinatorial approach Neumaier’s approach | %Error Present approach %Error in
B UB B UB in width B UB width
1 254.125 280.875 227.375| 310.440 210.53 254.125 280.875 0.000
2 -266.756 | -235.289 -294.835 -210.187 169.01 -266.756 | -235.289 0.000
3 108.385 134.257 95.920 | 148.174 101.97 107.098 134.987 7797
4 -346.267 | -302.194 -379.167 | -272.461 142 12 -347.003 | -300.909 4585
5 -43.854 -16.275 -48.143 | -12.985 2748 -44.975 -14.543 10.344
14 211.375 233.625 189.125 258.217 210.53 211.375 233.625 0.000
15 -330.395 | -298.929 -365.174 | -267.463 210.53 -330.395 | -298.929 0.000
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Conclusions

m Development and implementation of IFEM

m uncertain material, geometry and load parameters are described by
Interval variables

m Interval arithmetic is used to guarantee an enclosure of response

m Derived quantities obtained at the same accuracy of
the primary ones

m The method Is generally applicable to linear static
FEM, regardless of element type

m |[FEM forms a basis for generalized models of
uncertainty In engineering
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