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Uncertainty is unavoidable in engineering system
Structural mechanics entails uncertainties in material, 
geometry and load parameters (aleatory-epistemic)

Probabilistic approach is the traditional approach
Requires sufficient information to validate the 
probabilistic model
What if data is insufficient to justify a distribution?
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UncertaintyUncertainty
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Presentation Notes
uncertainties is unavoidable in engineering. For example, the required geometrical, material and loading data for structural analysis are characterized by uncertainties.

As consequence, the response of the structure will always exhibit

some degree of uncertainty. 

More reliable analysis and design can be achieved when uncertainty is accounted for.
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UncertaintyUncertainty

Probability Imprecise Probability

Lognormal Lognormal with interval mean

Tucker, W. T. and Ferson, S. , Probability bounds analysis in environmental risk assessments,
Applied Biomathematics, 2003. Mean = [20, 30], Standard deviation = 4, truncated at 0.5th and 99.5th.
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As consequence, the response of the structure will always exhibit

some degree of uncertainty. 

More reliable analysis and design can be achieved when uncertainty is accounted for.



Only range of information (tolerance) is available

Represents an uncertain quantity by giving a range of possible 
values

How to define bounds on the possible ranges of uncertainty?
experimental data, measurements, statistical analysis, 
expert knowledge

0t t δ= ±

0 0[ ,  ]t t tδ δ= − +
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Interval ApproachInterval Approach

Presenter
Presentation Notes
In interval approach, uncertainty is assumed to be “unknown but bounded” and it has lower and upper bounds without assigning a probability structure. 

Interval approach is most valuable when dealing with uncertainties with only range information.



Simple and elegant
Conforms to practical tolerance concept
Describes the uncertainty that can not be appropriately 
modeled by probabilistic approach

Computational basis for other uncertainty approaches 
(e.g., fuzzy set, random set, imprecise probability)
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Why Interval?Why Interval?

Provides guaranteed enclosuresProvides guaranteed enclosures
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Presentation Notes
The advantage of interval approach is that it is mathematically simple, and it requires less computation than the standard probabilistic approach such as Monte Carlo method.

There is no additional distribution assumption needed to model uncertainty.

Another motivation to use…
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Load UncertaintyLoad Uncertainty

Four-bay forty-story frame

Total number of floor load patterns

2160

 

= 1.46 ×

 

1048

If one were able to calculate

10,000 patterns / s

there has not been sufficient time since
the creation of the universe (4-8

 

)

 

billion
years ? to solve all load patterns for this
simple structure

Material  A36, Beams  W24 x 55,
Columns  W14 x 398

40
@

3.
66

 m
 =

 1
46

.3
 m

 (4
80

 ft
)

14.63 m (48 ft)

1 5

6 10

201 205

196 200

357 360

1 5201 204

17.64 kN/m (1.2 kip/ft)
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Interval arithmeticInterval arithmetic
Interval number represents a range of possible 
values within a closed set

}|{:],[ xxxRxxx ≤≤∈=≡x



Properties of Interval ArithmeticProperties of Interval Arithmetic
Let x, y and z be interval numbers
1.  Commutative Law

x + y = y + x
xy = yx

2.  Associative Law
x + (y + z) = (x + y)

 
+ z

x(yz)
 

= (xy)z
3.

 
Distributive Law does not always hold,

 
but

x(y + z)
 

⊆ xy + xz



Sharp ResultsSharp Results
 

––
 

OverestimationOverestimation

The DEPENDENCY problem arises when one or 
several variables occur more than once in an 
interval expression 

f (x) = x (1− 1) ⇒ f (x) = 0
f (x) = { f (x) = x −x | x∈ x}

f (x) = x − x , x = [1, 2]
f (x) = [1 − 2, 2 − 1] = [−1, 1] ≠ 0
f (x, y) = { f (x, y) = x −y | x∈ x, y ∈ y}



Sharp ResultsSharp Results
 

––
 

OverestimationOverestimation

Let a, b, c and d be independent variables, each with 
interval [1, 3]
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Finite ElementsFinite Elements

Finite Element Methods (FEM) are 
numerical method that provide 
approximate solutions to differential 
equations (ODE and PDE)

Presenter
Presentation Notes
The advantage of interval approach is that it is mathematically simple, and it requires less computation than the standard probabilistic approach such as Monte Carlo method.

There is no additional distribution assumption needed to model uncertainty.

Another motivation to use…





Finite Element Model (courtesy of Prof. Mourelatous)Finite Element Model (courtesy of Prof. Mourelatous)
500,000500,000--1,000,000 equations1,000,000 equations

Finite ElementsFinite Elements



Finite ElementsFinite Elements--
 

Uncertainty& ErrorsUncertainty& Errors

Mathematical model (validation)
Discretization of the mathematical model 
into a computational framework 
(verification) 
Parameter uncertainty (loading, material 
properties)
Rounding errors



Interval Finite Elements (IFEM)Interval Finite Elements (IFEM)
Follows conventional FEM
Loads, geometry and material property are expressed as 
interval quantities
System response is a function of the interval variables 
and therefore varies in an interval
Computing the exact response range is proven NP-hard
The problem is to estimate the bounds on the unknown 
exact response range based on the bounds of the 
parameters



FEMFEM--
 

InnerInner--Bound MethodsBound Methods

Combinatorial method (Muhanna and Mullen 1995, 
Rao and Berke 1997)
Sensitivity analysis method (Pownuk 2004)
Perturbation (Mc William 2000)
Monte Carlo sampling method

Need for alternative methods that achieve
Rigorousness – guaranteed enclosure
Accuracy – sharp enclosure
Scalability – large scale problem
Efficiency

Presenter
Presentation Notes
In interval approach, uncertainty is assumed to be “unknown but bounded” and it has lower and upper bounds without assigning a probability structure. 

Interval approach is most valuable when dealing with uncertainties with only range information.



Linear static finite element 
Muhanna, Mullen, 1995, 1999, 2001,and Zhang 2004
Popova 2003, and Kramer 2004
Neumaier and Pownuk 2004
Corliss, Foley, and Kearfott 2004

Heat Conduction
Pereira and Muhanna 2004

Dynamic
Dessombz, 2000

Free vibration-Buckling
Modares, Mullen 2004, and Bellini and Muhanna 2005

IFEMIFEM--
 

EnclosureEnclosure

Presenter
Presentation Notes
In interval approach, uncertainty is assumed to be “unknown but bounded” and it has lower and upper bounds without assigning a probability structure. 

Interval approach is most valuable when dealing with uncertainties with only range information.
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Multiple occurrences Multiple occurrences –– element levelelement level
Coupling Coupling –– assemblage processassemblage process
Transformations Transformations –– local to global and backlocal to global and back
Solvers Solvers –– tightest enclosuretightest enclosure
Derived quantities Derived quantities –– function of primary function of primary 

Overestimation in IFEMOverestimation in IFEM



Naïve interval FEA

1 2 2 1 1 1

2 2 2 2 2

[2.85,  3.15] [ 2.1,  1.9] 0.5
[ 2.1,  1.9] [1.9,  2.1] 1
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k
k

exact solution: u2 = [1.429, 1.579],       u3 = [1.905, 2.105]
naïve solution: u2 = [－0.052, 3.052],   u3 = [0.098, 3.902]
interval arithmetic assumes that all coefficients are 
independent
uncertainty in the response is severely overestimated (2000%)

p 1

E2, A2 , L2

1 2

E1, A1 , L1

1 2
p 2

3
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New FormulationNew Formulation

2 2

2 2Element (m)

1

PY

Node (n)
(a)

Element (m)

uY

uX

F2m

 

, u2m

F1m

 

, u1m

PY

2 2

12 1 2

1 1

Free node (n)

(b)

A typical node of a truss problem. (a) Conventional formulation. (b) Present formulation.
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The penalty method is illustrated here.



New FormulationNew Formulation

Lagrange Multiplier MethodLagrange Multiplier Method
A method in which the minimum of a functional 

such as

with the linear equality constraints 

is determined

∫=
b

a
dxvvuuxFvuI ),,,,(),( ''

0),,,( '' =vvuuG
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New FormulationNew Formulation

Lagrange Multiplier MethodLagrange Multiplier Method
The Lagrange’s method can be viewed as one of 

determining u, v
 

and λ by setting the first variation 
of the modified

 
functional

to zero

∫∫ λ+=λ+≡λ
b

a

b

a
dxGFdxvvuuGvuIvuL )(),,,(),(),,( ''
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New FormulationNew Formulation

Lagrange Multiplier MethodLagrange Multiplier Method
The result is Euler Equations of the

from which the dependent variables u, v,
 

and λ can be 
determined at the same time
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New FormulationNew Formulation
In steady-state analysis, the variational formulation for 
a discrete structural model within the context of Finite 
Element Method (FEM) is given in the following form 
of the total potential energy functional when subjected 
to the constraints

)VCU(PUKUU TTT* −λ+−=Π
2
1

VCU =
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New FormulationNew Formulation
Invoking the stationarity of  Π*, that is δΠ*= 0, we 
obtain

In order to force unknowns associated with coincident 
nodes to have identical values, the constraint equation 
CU=V

 
takes the form CU = 0, and the above system 

will have the following form
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New FormulationNew Formulation
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New FormulationNew Formulation

Iterative Enclosure (Neumaier 2007)

where

buD F a A)B (K +=+
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Numerical example
1001% ×⎟
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Numerical example
Eleven bar truss 

Error in bounds%= 0.17 %Error in bounds%= 0.17 %

15

Table 2  Eleven bar truss -displacements for 12% uncertainty in the modulus of elasticity (E) 
V2 ×10-5 U4 ×10-5 V4 ×10-5

Lower Upper Lower Upper Lower Upper
Combinatorial approach -15.903532 -14.103133 2.490376 3.451843 -0.843182 -0.650879
Krawczyk FPI --- --- --- --- --- ---
Neumaier’s approach -15.930764 -13.967877 2.431895 3.4943960 -0.848475 -0.633096
Error %(width) 9.02 10.50 11.99
Present approach -15.930764 -13.967877 2.431895 3.494396 -0.848475 -0.633096
Error %(width) 9.02 10.50 11.99



Numerical example
Eleven bar truss 

Error in bounds%= 0.45 %Error in bounds%= 0.45 %

Table 4  Eleven bar truss - comparison of axial forces for 10% uncertainty in the  modulus of 
elasticity (E)  for various approaches

Combinatorial approach -6.28858 -5.57152 -10.54135 -9.73966
Simple enclosure z1

 

(u) -7.89043 -3.96214 -11.89702 -8.39240
Error %(width) 447.83 337.15
Intersection z2

 

(u) -6.82238 -5.08732 -11.32576 -9.02784
Error %(width) 141.97 186.63
Present approach -6.31656 -5.53601 -10.58105 -9.70837
Error %(width) 8.85 8.85

3 ( )N kN 3 ( )N kN 9 ( )N kN
9 ( )N kN

15



Numerical example
Eleven bar truss – Bounds on axial forces 

15
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Numerical example
Fifteen bar truss – Bounds on axial forces 



Numerical example
Fifteen bar truss – Bounds on axial forces 

Table 12 Forces (kN)  in elements of fifteen element truss for 10% uncertainty in modulus of elasticity (E) and load

Element Combinatorial approach Neumaier’s  approach %Error 
in width

Present approach %Error in 
widthLB UB LB UB LB UB

1 254.125 280.875 227.375 310.440 210.53     254.125 280.875 0.000

2 -266.756 -235.289 -294.835 -210.187 169.01 -266.756 -235.289 0.000

3 108.385 134.257 95.920 148.174 101.97 107.098 134.987 7.797
4 -346.267 -302.194 -379.167 -272.461 142.12 -347.003 -300.909 4.585
5 -43.854 -16.275 -48.143 -12.985 27.48 -44.975 -14.543 10.344

14 211.375 233.625 189.125 258.217 210.53     211.375 233.625 0.000

15 -330.395 -298.929 -365.174 -267.463 210.53     -330.395 -298.929 0.000



ConclusionsConclusions
Development and implementation of IFEM

uncertain material, geometry and load parameters are described by 
interval variables
interval arithmetic is used to guarantee an enclosure of response

Derived quantities obtained at the same accuracy of 
the primary ones
The method is generally applicable to linear static 
FEM, regardless of element type
IFEM forms a basis for generalized models of 
uncertainty in engineering
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