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Abstract: This paper addresses the main challenge in interval computations which is to minimize the 

overestimation in the target quantities. When sharp enclosures for the primary variables are achievable in a 

given formulation such as the displacements in Interval Finite Elements (IFEM) the calculated enclosures 

for secondary or derived quantities such as stresses usually obtained with significantly increased 

overestimation. One should follow special treatment in order to decrease the overestimation in the derived 

quantities see Muhanna, Zhang, and Mullen (2007), Neumaier and Pownuk (2007). In this work we 

introduce a new formulation for Interval Finite Element Methods where both primary and derived quantities 

of interest are included in the original uncertain system as primary variables. The formulation is based on 

the variational approach and Lagrange multiplier method by imposing certain constraints that allows the 

Lagrange multipliers them-selves to be the derived quantities. Numerical results of this new formulation are 

illustrated in a number of example problems.

Keywords: Interval; Uncertainty; Dependent Variables; Finite Elements. 

1. Introduction 

Since the early development of Interval Finite Element Methods (IFEM) during the mid nineties of last 

century (Koyluoglu, H. U., Cakmak, A. S., and Nielson, S. R. K. 1995, Muhanna, R. L. and Mullen, R. L. 

1995, Nakagiri S. and Yoshikawa, N. 1996, Rao, S. S. and Sawyer, P. 1995, Rao, S. S. and Berke, L. 1997, 

Rao, S.S., and Chen Li 1998.) researchers have focused among other issues on two major problems; the first 

is how to obtain solutions for the resulting linear interval system of equations with reasonable bounds on 

the system response that make sense from practical point of view, or in other words with the least possible 

overestimation of their bounding intervals, the second is how to obtain reasonable bounds on the derived 

quantities that are functions of the system response. For example, when the system response is the 

displacement, the derived quantities might be forces or stresses which are functions of the displacements. 

Obtaining tight bounds on the derived quantities has been a tougher challenge due to the existing 
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dependency of these quantities on the primary dependent variables which are already overestimated. So far, 

the derived quantities are obtained with significantly increased overestimation.  

A significant effort has been made in the work of Zhang (2005) to control the additional overestimation in 

the values of the derived quantities; the derived quantities have been calculated by an implicit substitution 

of the primary quantities. In addition to calculating rigorous bounds on the solution of the resulting linear 

interval system, a special treatment has been developed to handle the overestimation in the derived 

quantities. Instead of first evaluating the primary quantities and then substituting the obtained values in the 

expression for the derived quantities, the expression for the primary quantities has been substituted before 

its evaluation in the derived quantities expression and both were evaluated simultaneously preventing a 

large amount of overestimation in the values of derived quantities. In spite of the advancement provided by 

this approach, still it is conditioned by the original IFEM formulation and the special treatment of required 

transformations. 

A significant improvement in the formulation of IFEM with application to truss problems has been 

introduced in the work of Neumaier and Pownuk (2007). This work has presented an iterative method for 

computing rigorous bounds on the solution of linear interval systems, with a computable overestimation 

factor that is frequently quite small. This approach has been demonstrated by solving truss problems with 

over 5000 variables and over 10000 interval parameters, with excellent bounds for up to about 10% input 

uncertainty. Although, no calculated derived quantities have been reported in this work, a formulation has 

been introduced for the calculation of derived quantities by intersecting the simple enclosure z = Z(u), 

where z depends linearly or nonlinearly on the solution u of the uncertain system with another enclosure 

obtained from the centered form (Neumaier and Pownuk, 2007, Eq. 4.13, pp 157). In spite of the provided 

improvement in this formulation, the two-step approach will result in additional overestimation when 

evaluating the derived quantities. 

It is quite clear that among other factors, the issue of obtaining tight enclosures for the primary variables as 

well as for the derived quantities is conditioned by IFEM formulation and the methods used for the 

evaluation of the derived quantities. In this work we introduce a new mixed formulation for Interval Finite 

Element Methods where the derived quantities of the conventional formulation are treated as dependent 

variables along with the primary variables. The formulation uses the mixed variational approach based on 

the Lagrange multiplier method. The system solution provides the primary variables along with the 

Lagrange multipliers which represent the derived quantities themselves. Numerical results of this new 

formulation are illustrated in a number of example problems.  

2. Formulation 

In the current formulation, our focus will be on two major issues:  

1. Obtaining the secondary variables (derived) such as forces and stresses of the conventional 

displacement FEM along with the primary variables (displacements) and with the same accuracy of 

the primary ones. 
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2. Reducing of overestimation in the bounds on the system response due to the coupling and 

transformation in the conventional FEM formulation as well as due to the nature of used interval 

linear solvers (Muhanna and Mullen, 2001). 

We will begin the formulation with a short theoretical background with the hope that it will facilitate a 

clearer understanding of the procedure followed in the present formulation. Interval quantities will be 

introduced in boldface non-italic font. 

2.1.  SECONDARY VARIABLES

Mixed or hybrid variational formulations are those where secondary variables of the conventional 

formulation are treated as dependent variables along with the primary variables. Most often these 

formulations are developed with the objective of determining the secondary variables, which are often 

quantities of practical interest, directly rather than from post-computations. Mixed formulations are based 

on stationary principles. A stationary principle is one in which the functional attains neither a minimum nor 

a maximum in its argument. In fact, a functional can attain a maximum with respect to one set of variables 

and a minimum with respect to another set of variables involved in the functional. An example of such 

functionals is provided by the functional based on the Lagrange multiplier method (Reddy, 2002). The 

Lagrange multiplier method, which forms the basis for the present mixed formulation method, will be 

introduced briefly in the next section. 

2.2.  LAGRANGE MULTIPLIER METHOD

The Lagrange multiplier method is one in which the minimum of a functional with linear equality 

constraints is determined. If we consider the problem of finding the minimum of a functional I (u, v), 

b

a
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The Lagrange multiplier method consists of multiplying Eq. (4) with an arbitrary parameter , integrating 

over the interval (a, b), and adding the results to Eq. (3). The multiplier is called the Lagrange multiplier. 

The Lagrange’s method can be viewed as one of determining u , v and  by setting the first variation of the 

modified functional 

b
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The boundary terms vanish because ( )u a , ( )u b , ( )v a , ( )v b  = 0.  Suppose that u is independent 

and v is related to u  by Eq. (4). We choose such that the coefficient of v is zero. Then by the 

fundamental lemma of variational calculus, it follows that (because u is arbitrary) the coefficient of u is 

also zero. Thus we have: 
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Equations (7) are the Euler equations of the functional 
b

a
dxGFvuL )(),,(  from which the 

dependent variables u, v, and  can be determined at the same time. In general, one can introduce the 

secondary variable z = Z(u) as the constraint G = {[z-Z(u)]2} = 0. Alternatively, we have found that the 

Lagrange multiplier is the pursued secondary variable by judicious choice of the constraint condition G(u, 
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u , v ,v ) = 0. In the next section we will illustrate the use of the Lagrange multiplier method in discrete 

structural models. 

2.3.  DISCRETE STRUCTURAL MODELS

In steady-state analysis, the variational formulation for a discrete structural model within the context of 

Finite Element Method (FEM) is given in the following form of the total potential energy functional 

(Gallagher 1975, Bathe 1996) 

PUKUU TT

2

1
 (8) 

with the conditions 

i  allfor
Ui

0  (9) 

where , K, U, and P are total potential energy, stiffness matrix, displacement vector, and load vector 

respectively. Assume that we want to impose onto the solution the m linearly independent discrete 

constraints VCU where C is a matrix of order m n . In the Lagrange multiplier method we amend the 

right-hand side of Eq. (8) to obtain 

)(
2

1* VCUPUKUU TTT
 (10) 

where is a vector of m Lagrange multipliers. Invoking the stationarity of  *, that is *=0, we obtain 

V

PU

C

CK T

0
 (11) 

The solution of Eq. (11) will provide the values of dependent variable U and  at the same time. 

The present interval formulation, which will be presented in the next section, is based on the Element-By-

Element (EBE) finite element technique developed in the work of Muhanna and Mullen 2001. In the EBE 

method, each element has its own set of nodes, but the set of elements is disassembled, so that a node 

belongs to a single element. A set of additional constraints is introduced to force unknowns associated with 

coincident nodes to have identical values. Thus, the constraint equation CU=V takes the form 

0CU (12) 

where C is the constraint matrix, and equation (11) takes the form: 
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00
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C
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2.4. PRESENT INTERVAL FORMULATION

The main sources of overestimation in the formulation of IFEM are the multiple occurrences of the same 

interval variable (dependency problem), the width of interval quantities, the problem size, and the problem 

complexity, in addition to the nature of the used interval solver of the interval linear system of equations. 

While the present formulation is valid for the FEM models in solid and structural mechanics problems, the 

truss model will be used here to illustrate the applicability and efficiency of the present formulation of 

without any loss of generality.  

To illustrate the present formulation, let us consider a typical two dimensional truss bar finite element as 

shown in Figure 1. According to finite element formulation (Bathe, 1996, Gallagher, 1995, Zienkiewicz and 

Taylor, 2000) the global finite element model of a truss system is given in the following form: 

PKU (14) 

where K is the assembled global stiffness matrix, P is the global load vector, and U is the unknown global 

displacement vector.  

Using boldface non-italic font for interval quantities, the interval form of Eq. (14) will be 

PKU (15) 

E, A, L

F1X, u1X

F2Y, u2Y
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F2, u2
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Y
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x

F1Y, u1Y

F2X, u2X

Figure 1. A typical truss bar element, local and global coordinates. 
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where K, U, and P are the interval global stiffness matrix, interval global displacement vector, and interval 

global load vector, respectively. The interval solution of Eq. (15) results in a significant overestimation in 

the system response; a comprehensive discussion can be found in (Muhanna and Mullen 2001). In addition, 

internal forces and stresses are quantities of practical interest in design. Usually interval element forces can 

be obtained as: 

UkF eee L  (16) 

where Fe, ke , Le are global interval vector of element forces, global interval element stiffness matrix, and 

element Boolean matrix, respectively. Once again, an additional overestimation in the values of forces is 

obtained due to the dependency between U and ke. Frequently, element forces are pursued in local 

coordinate system that will require the transformation from the global coordinates to the local ones in the 

form: 

UkF eeelocale, LT  (17) 

where Fe, local and Te are the local vector of interval element forces and the corresponding transformation 

matrix, respectively. The transformation procedure will provide an additional overestimation. 

The current formulation is attempting to reduce overestimation due to coupling in the FEM assembling 

process, multiple occurrences of interval quantities, transformation, and solving the final system of interval 

linear equations. In addition this formulation will introduce the derived quantities such as forces and 

stresses as dependent variables which will be obtained along with displacements when the system is solved. 

2 2

2 2Element (m)

1

PY 

Node (n)

(a)

Element (m)

uY 

uX 

F2m, u2m 

F1m, u1m 

PY 

2 2

12 1 2 

1 1

Free node (n)

(b)

Figure 2.  A typical node of a truss problem. (a) Conventional formulation. (b) Present formulation. 
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In the conventional formulation of FEM Figure 2 (a), after deriving the local elements’ stiffness matrices 

along with the local elements’ load vectors the system will be transformed to the global system and 

assembled based on compatibility requirements resulting in the equilibrium system given by Eq. (14). In the 

present formulation the following steps are followed: 

1. Considering a typical node of the truss system Figure 2 (a), elements and nodes are disassembled as 

in Figure 2 (b). The typical node is called a free node and is given along with all pertinent variables 

in the global coordinate system. Displacements are Xu and Yu and applied forces are XP and YP . 

The free node displacements are considered as independent of those of the elements. 

2. All coinciding elements at the free node along with pertinent variables are given in local coordinate 

system. For example, element m has the end nodes 1 and 2, the local displacements 1mu and 2mu , 

and the local forces 1mF and 2mF . By doing that, each element is treated as having independent 

degrees of freedom in its own local coordinate system. 

3. The system will be assembled imposing the discrete constraints Cmi to ensure the equality between 

the free node displacements and those of the elements. Where i is the number of constraints per 

element. 

This procedure will result in the following system of equations: 

00

PUk

C
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 (18) 

where k is an interval matrix consists of the individual elements’ local stiffness and zeros at the bottom 

corresponding the free nodes’ degrees of freedom and have the following structure: 
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and 
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i

i
i L

AEk i  (20) 

where Ei, Ai, and Li are the interval modulus of elasticity, the interval cross-sectional area, and the length of 
each element, respectively. 
Matrix C has the dimensions (k l), where k = number of elements’ degrees of freedom (2  number of 
elements in the truss bar element case), and l = total number of the system’s degrees of freedom. The entries 
of the matrix are equality constraints of the following type 

01 ijYijXi sincos uuu  (21) 

Where u1i is the local displacement of the node 1 that belongs to ith element, ujX and ujY are the X and Y
global displacements of jth free node coinciding with the 1st node of the ith element. Elements of CT are 
shown in Eq. (22) 

U is a vector of size 1s where s is the number of elements’ local degrees of freedom + number of free 
nodes’ global degrees of freedom. The entries of the vector are the interval local displacements of elements 
followed by interval global displacements of the free nodes as shown in Eq. (23).Vector  has the 
dimension of total number of elements’ local degrees of freedom and given in Eq. (24). The entries of the 
vector are the interval Lagrange multipliers that represent minus the local element forces in this case. 
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Vector P is the interval load vector and has the dimension equal to the sum of elements degrees of freedom 
and the free nodes degrees of freedom. The entries of the vector are given in Eq. (25). 

mYmXYX
T PPPPP 110000  (25) 

The accuracy of the system solution depends mainly on the structure of Eq. (18) and on the nature of the 
used solver. The solution of the interval system (18) provides the enclosures of the values of dependent 
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variables which are the interval displacements U and interval element forces . An iterative solver is 
discussed in the next section. 

2.5. ITERATIVE ENCLOSURES

The best known method for obtaining very sharp enclosures of interval linear system of equations that have 
the structure introduced in Eq. (26) is the iterative method developed in the work of Neumaier and Pownuk, 
(2007). The current formulation results in the interval linear system of equations given in (18) which can be 
introduced in the same structure of the following system: 

bu)D( FaABK  (26) 

with interval quantities in D and b only. The quality of the enclosures is known to be superior only in the 
special case where D is diagonal, however It is expected that the enclosures are also good in case D is block 
diagonal with diagonal blocks small compared to the matrix size. The solution is obtained by performing 
the following iterative scheme: 

dv)D{(d,v}d)(b)(){v 0DACBACFACa  (27) 

until some stopping criteria, and then the following enclosure is obtained: 

d)(b)()(u CBCFCa  (28) 

Where

vDd
dbv

dbu

)(

)(:

0

1

D
ACBACFACa

CBCFCa
ABDKC 0

 (29) 

In Neumaier’s work only excellent enclosures of the interval displacements are obtained. However for the 
derived quantities such as forces he suggested an improved enclosure by intersecting the simple enclosure   
z = Z(u) with the following enclosure: 

d)S()bb)(S()b(z CBmidCFmidCFZ  (28) 

which results in additional significant overestimation  
The current formulation allows obtaining the interval displacement U and the accompanied interval derived 
quantities  with the same accuracy. A number of examples are introduced in the following sections that 
illustrate the excellent accuracy of the developed method.  
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Figure 3. Eleven bar truss.

15 kN 

3. Example Problems 

Three example problems are chosen to illustrate the present approach and also to demonstrate its ability to 

obtain sharp bounds to the displacements and forces even in the presence of large uncertainties and large 

number of interval variables.  

The first example chosen is an eleven bar truss (Muhanna and Mullen, 2001) as shown in Figure 3. The 

displacements and forces of this statically indeterminate truss are dependent on the uncertainty present in 

the modulus of elasticity and load. The results of this example allow us to investigate the effect of load and 

stiffness uncertainty on the displacements and forces using various approaches presented.  A cantilever 

truss as shown in Figure 8 is chosen as second example. This truss structure is a benchmark problem 

adopted from the website of the Center for Reliable Computing 

(http://www.gtsav.gatech.edu/rec/benchmarks.html). The objective of choosing this example is to 

demonstrate the applicability, computational efficiency and scalability of the present approach for structures 

with complex configuration with a large number of interval parameters. The third example problem is a 

fifteen bar truss as shown in Figure 11 (Zhang, 2005). This truss is internally indeterminate but externally 

determinate. Thus, the support reactions as well as axial forces in elements 1,2,14 and 15 are independent of 

structural stiffness although structural stiffness is uncertain while the axial forces in the remaining elements 

are dependent on structural stiffness. The objective of choosing this example is to verify the ability of 

Neumaier’s approach and present approach to capture this phenomenon. 

Considering the first example problem, the eleven bar truss is subjected to a concentrated load of 15 kN, 

applied at the middle lower joint. The deterministic value of Young’s modulus of each element is 

Ei=2 1011N/m2, i=1,2,…,11, while the cross sectional area is 0.01m2. The modulus of elasticity of each 

element is assumed to vary independently. The solution is computed using four approaches viz. a 

combinatorial approach, Krawczyk Fixed Point Iteration (FPI)-this approach uses the same system structure 

as given by Neumaier and a fixed point iterative solver, Neumaier’s approach and the present approach.  

Tables 1, 2 and 3 show the computed values of selected displacements (vertical displacement V2 at node 2, 

horizontal displacement U4 and vertical displacement V4 at node 4) using four approaches mentioned above 

for uncertainties of 1 percent, 12 percent and 25 percent ( 0.5%, 6% and 12.5% from the mean value of 
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E, respectively. The error in width is computed as 1100
 solutionialcombinatorof width

 solutioncomputedof width
. It is 

observed from Table 1 that the displacements obtained using the present approach at 1 percent uncertainty 

provides sharp enclosure to the displacements obtained using the combinatorial approach and also agree 

very well with the displacements obtained using Neumaier’s approach and Krawczyk FPI . It is observed 

from Table 2 that for a large uncertainty of 12% (and beyond), Krawczyk FPI fails to provide any solution 

(no enclosure is reached). However the present approach and Neumaier’s approach still provide solution 

with reasonable sharpness for this level of uncertainty. For a comparison, the error in width of vertical 

displacement at node 2 (V2) varies from 0.71 at 1% uncertainty to 9.02 at 12% uncertainty, while the error 

in width is 20.24 at 25% uncertainty. Thus it is observed that both Neumaier’s approach and the present 

approach provide guaranteed bounds on the combinatorial approach. 

Table 1  Eleven bar truss - displacements for 1% uncertainty in the modulus of elasticity (E)  

V2 10-5 U4 10-5 V4 10-5

 Lower Upper Lower Upper Lower Upper 

Combinatorial approach -15.024443 -14.874946 2.923326 3.003075 -0.748810 -0.732849 

Krawczyk FPI -15.024603 -14.874039 2.922944 3.003347 -0.748841 -0.732732 

Error %(width) 0.71 0.81 0.93 

Neumaier’s approach -15.024602 -14.874039 2.922943 3.003347 -0.748841 -0.732731 

Error %(width) 0.71 0.81 0.93 

Present approach -15.024603 -14.874039 2.922944 3.003347 -0.748841 -0.732732 

Error %(width) 0.71 0.81 0.93 

Table 2  Eleven bar truss -displacements for 12% uncertainty in the modulus of elasticity (E)  

V2 10-5 U4 10-5 V4 10-5

 Lower Upper Lower Upper Lower Upper 

Combinatorial approach -15.903532 -14.103133 2.490376 3.451843 -0.843182 -0.650879 

Krawczyk FPI --- --- --- --- --- --- 

Neumaier’s approach -15.930764 -13.967877 2.431895 3.4943960 -0.848475 -0.633096 

Error %(width) 9.02 10.50 11.99 

Present approach -15.930764 -13.967877 2.431895 3.494396 -0.848475 -0.633096 

Error %(width) 9.02 10.50 11.99 

Table 3 Eleven bar truss -displacements for 25% uncertainty in the modulus of elasticity (E)  

V2 10-5 U4 10-5 V4 10-5

 Lower Upper Lower Upper Lower Upper 

Combinatorial approach -17.084938  -13.288285 1.983562 4.013033 -0.971261 -0.565208 

Neumaier’s approach -17.231940 -12.666701 1.705818 4.220473 -0.999561 -0.482011 

Error %(width) 20.24 23.90 27.45 

Present approach -17.231940 -12.666701 1.705818 4.220473 -0.999561 -0.482011 

Error %(width) 20.24 23.90 27.45 

Figure 4 shows the computed interval values of vertical displacement V2 at node 2. The figure depicts the 

variation of the width of the present approach and the combinatorial approach with the variation of modulus 

of Elasticity (E) from its mean value. It is observed from this figure that the present solution encloses the 

combinatorial solution at all values of variation from 0 percent to 25 percent. A similar behaviour is 

observed in the plot for variation of width of axial force N3 in element 3 in Figure 5. 
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Axial forces are computed for the eleven bar truss using the following approaches 

a) Simple enclosure z1(u) 

b) z2(u), the intersection of z1(u) with the enclosure obtained using Eq. (28) of Neumaier. 

c) Present approach 

The interval values of axial forces in elements 3 and 9 (N3 and N9) are presented in Table 4. It is clearly 

observed from this table that the present method provides very sharp enclosure to the forces in comparison 
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Figure 5. Eleven bar truss – variation of axial force in element 3 with uncertainty of E. Comb. solution vs. present solution.

Figure 4. Eleven bar truss - variation of vertical displacement at node 2 with uncertainty of E. Comb. solution vs. present solution.
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with both the enclosures suggested by Neumaier, even at an uncertainty as large as 10%. This illustrates the 

ability of the present approach to obtain sharp bounds to displacements and forces even at larger values of 

uncertainty. 

The eleven bar truss mentioned above is analysed once again at various levels of uncertainty of Young’s 

modulus and load and the results are tabulated. Table 5 presents the computed values of selected 

displacements for the second case study with uncertainty of Young’s modulus and load being 1 percent. 

Table 6 presents the corresponding values of axial forces in elements 3 and 9. It is observed from these 

tables that the present solution gives very sharp enclosure to the values of displacements and forces. 

Further, the results of displacements obtained using the present approach agree very well with the results 

obtained using Neumaier’s approach. It is observed that Krawczyk FPI fails to provide an enclosure  at 

11.5 percent uncertainty of both load and modulus of elasticity (E). Figure 6 shows the variation of vertical 

displacement at node 4 with the variation of uncertainty of Young’s modulus and load. Figure 7 shows the 

variation of axial force in element 9 with the variation of uncertainty of Young’s modulus and load.  It is 

observed from these figures that the present solution encloses the combinatorial solution at all levels of 

uncertainty. 

Table 4  Eleven bar truss - comparison of axial forces for 10% uncertainty in the  modulus of elasticity (E)  for various 

approaches 

3
( )N kN

3
( )N kN

9
( )N kN

9
( )N kN

Combinatorial approach -6.28858 -5.57152 -10.54135 -9.73966 

Simple enclosure z1(u) -7.89043 -3.96214 -11.89702 -8.39240 

Error %(width) 447.83 337.15 

Intersection z2(u)  -6.82238 -5.08732 -11.32576 -9.02784 

Error %(width) 141.97 186.63      

Present approach -6.31656 -5.53601 -10.58105 -9.70837 

Error %(width) 8.85 8.85 

Table 5 Eleven bar truss -displacements for 1% uncertainty in the modulus of elasticity (E) and load 

V2 10-5 U4 10-5 V4 10-5

 Lower Upper Lower Upper Lower Upper 

Combinatorial approach -15.09956 -14.80057 2.90870 3.01809 -0.75255 -0.72918 

Neumaier’s approach -15.09972 -14.79891 2.90792 3.01836 -0.75258 -0.72898 

Error %(width) 0.60 0.96 0.98 

Present approach -15.09972 -14.79891 2.90792 3.01836 -0.75258 -0.72898 

Error %(width) 0.60 0.96 0.98 

Table 6 Eleven bar truss - Axial forces for 1% uncertainty in the the modulus of elasticity (E) and load 

N3 (kN) N9 (kN) 
Lower Upper Lower Upper 

Combinatorial  approach -5.99198 -5.861027 -10.23567 -10.05406 

Intersection z2(u) -6.03902 -5.81438 -10.30685 -9.98368 

Error %(width) 71.53 77.95 

Present approach -5.99224 -5.86033 -10.23604 -10.05338 

Error %(width) 0.72 0.58 
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The cantilever truss structure as described earlier is shown in Figure 8. This structure has 101 elements with 

interval modulus of elasticity (E). The numerical values adopted to analyse the truss are P= 1000 N, L = 1 

m, A = 0.01 m2, and E = 2 1011N/m2. Maximum uncertainty allowed in modulus of Elasticity (E) is                    

5  percent ( 2.5% from the mean value of E). Four different solutions are presented for the problem using 

the following approaches 

Figure 7. Eleven bar truss – Variation of axial force in element 9 with uncertainty of load and E. Comb. solution vs, present 

 solution. 
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Figure 6. Eleven bar truss – Variation of vertical displacement at node 4 with uncertainty of load and E. Comb. solution 

 vs present solution. 
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Figure 8. Benchmark problem – Cantilever truss. 

Element-by-element (EBE) method (Muhanna, Zhang and Mullen, 2007)  

Neumaier’s method (Neumaier and Pownuk, 2007)  

Pownuk’s sensitivity analysis (Pownuk, 2004) and  

Present approach. 

The results for the horizontal and vertical displacement at the right upper corner (node D) of the truss are 

computed. These values are used for the computation of non-dimensional constants xDC and yDC  defined 

as xD D

AE
C U

PL
and yD D

AE
C V

PL
. Values of xDC and yDC  are computed for all the approaches 

and are presented in Tables 3 and 4. It is observed from Tables 7 and 8 that widths of enclosures obtained 

using the present approach agree very well with the Neumaier’s approach as well as sensitivity analysis. 

The variation of the width of the enclosure with uncertainty of Young’s modulus for displacements UD and 

VD can be observed from the Figures 9 and 10. It is further observed that the EBE method gives 

overestimated results compared to the other three methods. Further, it is to be noted that sensitivity analysis 

provides an inner bound solution to the displacements. 

Table. 7 Cantilever truss-  non-dimensional width xDC  of  displacement DU

Uncertainty (%) 0.0 1.0 2.0 3.0 4.0 5.0 

EBE approach 0.0 218.50 535.30 1002.7 1700.2 2747.80 

Neumaier’s approach 0.0 183.16 368.34 555.71 745.3 937.20 

Present approach 0.0 183.12 368.33 555.67 745.19 936.95 

Sensitivity analysis 0.0 182.10 364.20 546.4 728.65 911.10 

Table.8  Cantilever truss - non-dimensional width yDC of  displacement DV

Uncertainty (%) 0.0 1.0 2.0 3.0 4.0 5.0 

EBE approach 0.0 14.48 46.03 104.84 206.84 376.89 

Neumaier’s approach 0.0 8.41 16.92 25.54 34.28 43.14 

Present approach 0.0 8.40 16.91 25.53 34.26 43.11 

Sensitivity analysis 0.0 8.35 16.70 25.06 33.41 41.78 
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Figure 9. Cantilever truss - variation of non-dimensional widths of inte val solution of DU w.r.t. uncertainty of E.
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Figure 10. Variation of non-dimensional widths of interval solution of DV w.r.t. uncertainty of E.
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The fifteen element truss shown in Figure 11 is subjected to vertical point loads of P1=200 kN, P2=100 

kN,P3=100 kN and a horizontal point load P4=90 kN applied at the joints 5, 2, 6 and 3 respectively. Cross 

section areas of elements 1,2,3,13,14 and 15 are 10.0 10-4 m2 while for the rest of the elements is the cross 

sectional area is 6.0 10-4 m2. The deterministic value of Young’s modulus of each element is 

Ei=2 1011N/m2, i =1, 2 ,…15, while the cross sectional area is 0.01 m2. The modulus of elasticity of each 

element is assumed to vary independently. Results are computed using combinatorial approach, Neumaier’s 

approach and present approach.  The following two case studies are taken up to demonstrate the 

effectiveness of the present approach.  

 Case A: 10 percent uncertainty in modulus of Elasticity (E) while loads are deterministic. 

 Case B: 10 percent uncertainty in both modulus of Elasticity (E) and loads  

Table 9 presents the axial forces in elements 1,2,14 and 15 for case A. It is observed that the forces in these 

elements computed using the present approach as well as combinatorial solution are thin intervals and 

match exactly with each other. This is because the axial forces in these elements are independent of 

structural stiffness. However, it is observed from Table 9 that forces in these elements obtained using 

Neumaier’s approach have interval values. Thus Neumaier’s approach fails to capture the deterministic 

nature of axial forces in these elements. Error in bounds is computed because error in width can not be 

computed owing to zero width of combinatorial solution. Table 10 shows the corresponding axial forces in 

the elements 3, 4 and 5. It is further observed that the solution obtained by present approach matches 

exactly with the combinatorial solution while Neumaier’s approach gives an overestimated solution.  

Table 9  Forces (kN)  in elements 1,2, 14 and 15 of fifteen element truss for 10% uncertainty in the modulus of Elasticity 

N1 (kN) N2 (kN) N14 (kN) N15 (kN)
 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial  

approach 

267.500 267.500 -251.022 -251.022 222.500 222.500 -314.662 -314.662

Neumaier’s  

approach 

240.750 295.660 -277.450 -225.920 200.250 245.92 -347.780 -283.200

Error %(bounds) -10.00 10.53 10.53 -10.00 -10.00 10.53 10.52 -10.00 

Present approach 267.500 267.500 -251.022 -251.022 222.500 222.500 -314.662 -314.662

Error %(bounds) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Figure 11. Fifteen bar  truss.
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Table 10  Forces (kN)  in elements 3,4 and 5 of fifteen element truss for 10% uncertainty in the modulus of 

Elasticity (E)

N3 (kN) N4 (kN) N5 (kN)
 Lower Upper Lower Upper Lower Upper 

Combinatorial  approach 115.221 126.900 -329.778 -318.099 -38.043 -21.526 

Neumaier’s  approach 103.379 139.929 -361.014 -288.885 -41.594 -18.910 

Error %(width) 114.609 -330.390 -38.858 

Present approach 114.609 127.476 -330.390 -317.523 -38.858 -20.661 

Error %(width) 10.17 10.17 10.17 

Table 11 depicts the horizontal and vertical displacements U5 and V5 of node 5 for case B. It is observed 

from Table 11 that, even for a large uncertainty of 10 percent, the displacements obtained using the present 

approach give excellent bounds to combinatorial solution and also compare very well with the results of 

Neumaier’s approach.  

Table  11 Fifteen  element truss –displacements for 10% uncertainty i  the modulus of elasticity (E) and load 

U5 10-2 V5 10-2

Lower Upper Lower Upper 

Combinatorial approach 1.51430 1.87214 -6.56423  -5.37344 

Neumaier’s approach 1.49353 1.87429 -6.57150 -5.30663 

Error %(width) 6.40 6.22 

Present approach 1.49353 1.87429 -6.57150 -5.30663 

Error %(width) 6.40 6.22 

Table 12 presents the axial forces in selected elements for case B. It is observed from Table 12 that the 

widths of the axial forces in elements 1,2,14 and 15 computed using Neumaier’s approach are quite large in 

while the corresponding errors in widths are zero in the case of forces obtained using present approach. 

Also, the axial forces in elements 3, 4 and 5 computed using the present approach provide a sharp enclosure 

to combinatorial solution while Neumaier’s approach provides overestimated bounds to combinatorial 

solution.  Thus it is concluded that the present approach provides very sharp enclosures to the axial forces 

obtained using combinatorial solution while Neumaier’s solution provides overestimated bounds.  

Table 12 Forces (kN)  in elements of fifteen element truss for 10% uncertainty in modulus of elasticity (E) and load 

Element Combinatorial approach Neumaier’s  approach Present approach 

 LB UB LB UB 

%Error 

in width LB UB 

%Error 

in width 

1 254.125 280.875 227.375 310.440 210.53   254.125 280.875 0.000 

2 -266.756 -235.289 -294.835 -210.187 169.01 -266.756 -235.289 0.000 

3 108.385 134.257 95.920 148.174 101.97 107.098 134.987 7.797 

4 -346.267 -302.194 -379.167 -272.461 142.12 -347.003  -300.909 4.585 

5 -43.854 -16.275 -48.143 -12.985 27.48 -44.975  -14.543 10.344 

14 211.375 233.625 189.125 258.217 210.53   211.375 233.625 0.000 

15 -330.395 -298.929 -365.174 -267.463 210.53   -330.395 -298.929 0.000 

4. Conclusions 

A new formulation for Interval Finite Element Methods is introduced. In this approach, both 

primary and derived quantities of interest are included in the original uncertain system as primary 
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variables. The formulation is based on the variational approach and Lagrange multiplier method 

involving imposition of certain constraints that allow the Lagrange multipliers them-selves to be 

the derived quantities. Numerical results of this new formulation are illustrated in a number of 

example problems. It is observed that the displacements obtained by present approach provide a 

sharp enclosure to combinatorial solution and agree very well with the results obtained by 

Neumaier at all uncertainties. However, Krawczyk’s Fixed Point Iteration fails to provide any 

enclosure to the solution at large uncertainties. Further, the forces computed using the present 

approach provide sharp enclosure to the combinatorial solution while forces computed using the 

approach suggested by Neumaier are found to yield significantly overestimated results. The 

present approach captures exactly the behaviour of statically determinate structures where the 

internal forces in elements are independent of material properties while all previous methods do 

not.  

The present method addresses the basic issue of eliminating the additional overestimation in the 

derived quantities by adopting the mixed formulation that makes possible the simultaneous 

computation of primary and derived variables at the same level of accuracy. The present approach 

can find further application in the area of non-linear problems of structural mechanics involving 

large uncertainties of structural parameters. 
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